函數(shù)f(x)=
2x2-12x+10
的定義域?yàn)椋ā 。?/div>
A、[5,+∞)
B、(-∞,1)∪(5,+∞)
C、(-∞,1]∪[5,+∞)
D、[1,5]
考點(diǎn):函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)成立的條件,即可得到結(jié)論.
解答: 解:要使函數(shù)f(x)有意義,則2x2-12x+10≥0,
即x2-6x+5≥0,
解得x≥5或x≤1,
故函數(shù)的定義域?yàn)椋?∞,1]∪[5,+∞),
故選:C.
點(diǎn)評(píng):本題主要考查函數(shù)的定義域的求解,要求熟練掌握常見(jiàn)函數(shù)成立的條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①命題“若α=
π
4
,則tanα=1”的否命題是“若α≠
π
4
,則tanα≠1”;
②命題:“若整系數(shù)一元二次方程ax2+bx+c=0有有理根,那么a,b,c中至少有一個(gè)是偶數(shù)”.用反證法證明則假設(shè)是:“假設(shè)a,b,c中至多有兩個(gè)是偶數(shù)”;
③已知A(1,0),B(-1,0),點(diǎn)C是圓x2+y2-6x-8y+21=0上的動(dòng)點(diǎn),則△ABC面積最大值是4;
④若函數(shù)f(x)=
1
3
x3-x2+ax+10在區(qū)間[-1,4]上是單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是(-∞,-8]∪[-3,+∞).
其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式x2+x-2≥0的解集是( 。
A、{ x|x≤-2或x≥1}
B、{x|-2<x<1}
C、{x|-2≤x≤1}
D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某種產(chǎn)品的支出廣告額x與利潤(rùn)額y(單位:萬(wàn)元)之間有如下對(duì)應(yīng)數(shù)據(jù):
x34567
y2030304060
則回歸直線方程必過(guò)( 。
A、(5,30 )
B、(4,30)
C、(5,35)
D、(5,36)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的通項(xiàng)公式是an=4n-2,則a3=(  )
A、2B、10C、14D、62

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個(gè)函數(shù),若對(duì)任意的x∈[a,b],都有|f(x)-g(x)|≤k(k>0),則稱f(x)與g(x)在[a,b]上是“k度和諧函數(shù)”,[a,b]稱為“k度密切區(qū)間”.設(shè)函數(shù)f(x)=lnx與g(x)=
mx-1
x
在[
1
e
,e]上是“e度和諧函數(shù)”,則m的取值范圍是(  )
A、[-e-1,1]
B、[-1,e+1]
C、[
1
e
-e,1+e]
D、[
1
e
+1-e,1+e]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)變量x,y滿足約束條件
x+y-1≥0
x+2y-2≤0
y≥0
,則目標(biāo)函數(shù)z=x-y+1的最大值為( 。
A、-1B、0C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b∈R,且a>b,則下列不等式中恒成立的是( 。
A、ab>a+b
B、(
1
2
a<(
1
2
b
C、lg(a-b)>0
D、
a
b
>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法,不正確的是(  )
①數(shù)據(jù)4、6、6、7、9、4的眾數(shù)是4;
②平均數(shù)、眾數(shù)與中位數(shù)從不同的角度描述了一組數(shù)據(jù)的集中趨勢(shì);
③平均數(shù)是頻率分布直方圖的“重心”;
④頻率分布直方圖中各小長(zhǎng)方形的面積等于相應(yīng)各組的頻數(shù).
A、①②③B、②③
C、①④D、①③④

查看答案和解析>>

同步練習(xí)冊(cè)答案