設(shè)f-1(x)是函數(shù)f(x)=
1
2
(2x-2-x)
的反函數(shù),則使f-1(x)>1成立的x的取值范圍為( 。
分析:首先由函數(shù)f(x)=
1
2
(2x-2-x)求其反函數(shù),要用到解指數(shù)方程,整體換元的思想,將2x看作整體解出,然后由f-1(x)>1構(gòu)建不等式解出即可.
解答:解:由題意設(shè)y=
1
2
(2x-2-x)整理化簡(jiǎn)得22x-2y2x-1=0,
解得:2x=y±
y2+1

∵2x>0,∴2x=y+
y2+1
,
∴x=log2(y+
y2+1

∴f-1(x)=log2(x+
x2+1

由使f-1(x)>1得log2(x+
x2+1
)>1
∵2>1,∴x+
x2+1
>2
由此解得:x>
3
4

故選A.
點(diǎn)評(píng):本題考查反函數(shù)的概念、求反函數(shù)的方法、解指數(shù)方程、解不等式等知識(shí)點(diǎn),有一定的綜合性,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f-1(x)是函數(shù)f(x)=2x-(
1
3
)x+x
的反函數(shù),則使f-1(x)>1成立的x的取值范圍是( 。
A、(-∞,
8
3
)
B、(
8
3
,+∞)
C、(0,
8
3
)
D、(1,
8
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f-1(x)是函數(shù)f(x)=log2(x+1)的反函數(shù),若[1+f-1(a)]•[1+f-1(b)]=8,則a+b的值為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•東城區(qū)二模)設(shè)f-1(x)是函數(shù)f(x)=log3(x+6)的反函數(shù),若[f-1(a)+6][f-1(b)+6]=27,則f(a+b)的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f-1(x)是函數(shù)f(x)=ln(x+
x2+1
)
的反函數(shù),則使f-1(x)>1成立的x的取值范圍為
(ln(
2
+1),+∞)
(ln(
2
+1),+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案