(12分)如圖,已知橢圓(a>b>0)的離心率,過點 和的直線與原點的距離為.
(1)求橢圓的方程;
(2)已知定點,若直線與橢圓交于、兩 點.問:是否存在的值,
使以為直徑的圓過點?請說明理由.
(1).(2)存在,使得以CD為直徑的圓過點E。
【解析】
試題分析:(1)設橢圓的標準方程,根據離心率求得a和c關系,進而根據a求得b,則橢圓的方程可得.
(2)由題意知,直線l的參數(shù)方程,代入橢圓方程聯(lián)立消去x,y,要使以CD為直徑的圓過點E(-1,0),當且僅當CE⊥DE時成立,利用關系式得到k的值。
解:(1)直線AB方程為:bx-ay-ab=0.
依題意 解得
∴ 橢圓方程為. 4分
(2)假若存在這樣的k值,
由得 .6分
∴ 、
設,、,,則 ② 8分
而.
要使以CD為直徑的圓過點E(-1,0),當且僅當CE⊥DE時,則,即
∴ ③
將②式代入③整理解得. 經驗證,,使①成立.
綜上可知,存在,使得以CD為直徑的圓過點E. 12分
考點:本題主要考查了橢圓的方程與其幾何性質的運用。直線與圓錐曲線的綜合問題.此類題綜合性強,要求學生要有較高地轉化數(shù)學思想的運用能力,能將已知條件轉化到基本知識的運用.
點評:解決該試題的關鍵是熟悉圓錐曲線的基本性質,能運用a,b,c準確表示,而對于是否存在要使以CD為直徑的圓過點E,轉化為垂直的關系式得到。
科目:高中數(shù)學 來源:2014屆廣東省、陽東一中高二上聯(lián)考文數(shù)試卷(解析版) 題型:解答題
(本題滿分14分)
如圖,已知橢圓=1(a>b>0),F1、F2分別為橢圓的左、右焦點,A為橢圓的上的頂點,直線AF2交橢圓于另 一點B.
(1)若∠F1AB=90°,求橢圓的離心率;
(2)若=2,·=,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆度吉林省吉林市高二上學期期末理科數(shù)學試卷 題型:解答題
如圖,已知橢圓(a>b>0)的離心率,過頂點A、B的直線與原點的距離為.
(1)求橢圓的方程.
(2)已知定點E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點.問:是否存在k的值,使以CD為直徑的圓過E點?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆江蘇省淮安市高二上學期期末模擬考試(四)數(shù)學 題型:解答題
如圖,已知橢圓(a>b>0)的離心率,過點A(0,-b)和B(a,0)的直線與原點的距離為.
(1)求橢圓的方程.
(2)已知定點E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點.
問:是否存在k的值,使以CD為直徑的圓過E點?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆山東省濰坊市高二寒假作業(yè)(三)數(shù)學試卷 題型:解答題
如圖,已知橢圓(a>b>0)的離心率,過點A(0,-b)和B(a,0)的直線與原點的距離為.
(1)求橢圓的方程.
(2)已知定點E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點.問:是否存在k的值,使以CD為直徑的圓過E點?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年河北省邯鄲市高二上學期期末考試數(shù)學理卷 題型:解答題
(示范高中)如圖,已知橢圓(a>b>0)的離心率,過點 和的直線與原點的距離為.
(1)求橢圓的方程;
(2)已知定點,若直線與橢圓交于、兩點.問:是否存在的值,使以為直徑的圓過點?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com