(2013·杭州模擬)已知數(shù)列{an}的前n項和Sn=-an-n-1+2(n∈N*),數(shù)列{bn}滿足bn=2nan.
(1)求證數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項公式.
(2)設數(shù)列的前n項和為Tn,證明:n∈N*且n≥3時,Tn>.
(3)設數(shù)列{cn}滿足an(cn-3n)=(-1)n-1λn(λ為非零常數(shù),n∈N*),問是否存在整數(shù)λ,使得對任意n∈N*,都有cn+1>cn.
(1)an=(n∈N*)
(2)見解析
(3)存在整數(shù)λ=-1,使得對任意n∈N*有cn+1>cn.
【解析】(1)在Sn=-an-n-1+2中,令n=1,可得S1=-a1-1+2=a1,即a1=,
當n≥2時,Sn-1=-an-1-n-2+2,
所以an=Sn-Sn-1=-an+an-1+n-1,
所以2an=an-1+n-1,即2nan=2n-1an-1+1.
因為bn=2nan,所以bn=bn-1+1,即當n≥2時,bn-bn-1=1.
又b1=2a1=1,所以數(shù)列{bn}是首項和公差均為1的等差數(shù)列.
于是bn=1+(n-1)·1=n=2nan,
所以an=(n∈N*).
(2)由(1)得cn=an=(n+1)n,
所以Tn=2×+3×2+4×3+…+(n+1)n,①
Tn=2×2+3×3+4×4+…+(n+1)n+1.②
由①-②得Tn=1+2+3+…+n-(n+1)n+1
=1+-(n+1)n+1
=-,
所以Tn=3-,
Tn-=3--
=,
于是確定Tn與的大小關系等價于比較2n與2n+1的大小,
由2<2×1+1;22<2×2+1;23>2×3+1;24>2×4+1;25>2×5+1;…
可猜想當n≥3時,2n>2n+1,證明如下:
方法一:①當n=3時,對上式驗算顯示成立.
②假設當n=k時成立,則n=k+1(k≥2)時,
2k+1=2·2k>2(2k+1)=4k+2=2(k+1)+1+(2k-1)>2(k+1)+1,
所以當n=k+1時猜想也成立.
綜合①②可知,對一切n≥3的正整數(shù),都有2n>2n+1.
方法二:當n≥3時,
2n=(1+1)n=+++…++≥+++=2n+2>2n+1,
綜上所述,當n≥3時,Tn>.
(3)因為cn=3n+=3n+(-1)n-1λ·2n,
所以cn+1-cn=[3n+1+(-1)nλ·2n+1]-[3n+(-1)n-1λ·2n]
=2·3n-3λ(-1)n-1·2n>0,
所以(-1)n-1·λ<n-1.①
當n=2k-1(k=1,2,3,…)時,①式即為λ<2k-2,②
依題意,②式對k=1,2,3,…都成立,所以λ<1,
當n=2k,k=1,2,3,…時,①式即為λ>-2k-1,③
依題意,③式對k=1,2,3,…都成立,
所以λ>-,所以-<λ<1,又λ≠0,
所以存在整數(shù)λ=-1,使得對任意n∈N*有cn+1>cn.
科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 集合、常用邏輯用語、不等式、函數(shù)與導數(shù)(解析版) 題型:選擇題
小王從甲地到乙地往返的時速分別為a和b(a<b),其全程的平均時速為v,則( )
A.a(chǎn)<v< B.v=
C.<v< D.v=
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 立體幾何(解析版) 題型:選擇題
在正三棱柱ABC—A1B1C1中,D是AC的中點,AB1⊥BC1,則平面DBC1與平面CBC1所成的角為( )
A.30° B.45° C.60° D.90°
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 概率與統(tǒng)計(解析版) 題型:填空題
從某小區(qū)抽取100戶居民進行月用電量調(diào)查,發(fā)現(xiàn)其用電量都在50至350度之間,頻率分布直方圖如圖所示.
(1)直方圖中x的值為________;
(2)在這些用戶中,用電量落在區(qū)間[100,250)內(nèi)的戶數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 概率與統(tǒng)計(解析版) 題型:選擇題
使n(n∈N+)的展開式中含有常數(shù)項的最小的n為( )
A.4 B.5 C.6 D.7
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 數(shù)列、推理與證明(解析版) 題型:填空題
(2013·淄博模擬)如圖,一個類似楊輝三角的數(shù)陣,請寫出第n(n≥2)行的第2個數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 數(shù)列、推理與證明(解析版) 題型:選擇題
已知向量a、b的夾角為120°,且|a|=|b|=4,那么b·(2a+b)的值為( )
A.48 B.32 C.1 D.0
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 三角函數(shù)、解三角形與平面向量(解析版) 題型:填空題
若非零向量a,b滿足|a|=|b|,(2a+b)·b=0,則a與b的夾角為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年吉林省延邊州高考復習質量檢測文科數(shù)學試卷(解析版) 題型:填空題
設△ABC的三個內(nèi)角A、B、C所對的三邊分別為a,b,c,若△ABC的面積為S=a2-(b-c)2,則= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com