4.若1+sinθ$\sqrt{si{n}^{2}θ}$+cosθ$\sqrt{co{s}^{2}θ}$=0成立,則θ不可能是(  )
A.第二、三、四象限角B.第一、二、三象限角
C.第一、二、四象限角D.第一、三、四象限角

分析 根據(jù)象限角的正弦和余弦的符號即可判斷.

解答 解:1+sinθ$\sqrt{si{n}^{2}θ}$+cosθ$\sqrt{co{s}^{2}θ}$=0,
∴1+sinθ|sinθ|+cosθ|cosθ|=0,
當(dāng)θ為第一象限角時,1+sin2θ+cos2θ=2,
當(dāng)θ為第二象限角時,1+sin2θ-cos2θ=2sin2θ>0,
當(dāng)θ為第三象限角時,1-sin2θ-cos2θ=1-1=0,
當(dāng)θ為第四象限角時,1-sin2θ+cos2θ=2cos2θ>0,
則θ不可能是第一,二,四象限角,
故選:C

點評 本題考查了象限角的正弦和余弦的符號,關(guān)鍵是分類,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=a-$\frac{2}{{2}^{x}+1}$(a∈R).
(1)試判斷f(x)的單調(diào)性,并證明你的結(jié)論;
(2)若f(x)為定義域上的奇函數(shù),求滿足f(ax)+f(x2-2a)<0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=sin(2x+φ)的圖象的一個對稱中心為($\frac{π}{3}$,0),若|φ|<$\frac{π}{2}$,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.空間四點A,B,C,D滿足|$\overrightarrow{AB}$|=2,|$\overrightarrow{BC}$|=3,|$\overrightarrow{CD}$|=3$\sqrt{6}$,|$\overrightarrow{DA}$|=7,則$\overrightarrow{AC}$•$\overrightarrow{BD}$的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.對數(shù)函數(shù)g(x)的反函數(shù)f(x)滿足f(-$\frac{3}{2}$)=27,則g(3)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如果函數(shù)f(x)=3sin(2x-φ)(0<φ<π)的圖象滿足f(x+$\frac{π}{6}$)=f($\frac{π}{6}$-x),則f(x)$≥\frac{3}{2}$的解集為{x|kπ+$\frac{π}{2}$≤x≤kπ+$\frac{5π}{6}$,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在等差數(shù)列{an}中,已知a4=-1,a7=8,則首項a1與公差d為-10;3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若函數(shù)f(x)=(x-a)2+1在(-∞,3)上是減函數(shù),則a與3的大小關(guān)系是a≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)二次函數(shù),且滿足f(0)=1,f(x+1)-f(x)=2x.
(1)求解析式f(x);
(2)討論f(x)在[0,a]上的值域.

查看答案和解析>>

同步練習(xí)冊答案