已知二次函數(shù)f(x)=ax2+bx+c,g(x)=λax+b(λ≥1),當(dāng)|x|≤1時(shí),|f(x)|≤1.
(1)證明:|a|≤2.
(2)用f(0),f(1),f(-1)表示g(1),g(-1).
(3)當(dāng)|x|≤1時(shí),證明|g(x)|≤2λ.
解:(1)因?yàn)閒(0)=c,f(1)=a+b+c,f(-1)=a-b+c. 所以2a=f(1)+f(-1)-2f(0).因?yàn)閨x|≤1時(shí),|f(x)|≤1,所以|f(1)|≤1,|f(-1)|≤1,|f(0)|≤1.所以|2a|=|f(1)+f(-1)-2f(0)|≤|f(1)|+|f(-1)|+2|f(0)|≤1+1+2=4,即|a|≤2. (2)g(1)=λa+b=a+b+c+(λ-1)a-c=f(1)+f(-1)-λf(0). g(-1)=-λa+b=-(a-b+c)+(1-λ)a+c=f(1)-f(-1)+λf(0). (3)因?yàn)棣恕?,|f(1)|≤1,|f(-1)|≤1,|f(0)|≤1, 所以|g(1)|=|f(1)+f(-1)-λf(0)|≤++λ=2λ. |g(-1)|=f(1)-f(-1)+λf(0)|≤++λ=2λ. 又g(x)是關(guān)于x的一次函數(shù),根據(jù)一次函數(shù)的單調(diào)性知,對(duì)一切|x|≤1,有|g(x)|≤2λ. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:成功之路·突破重點(diǎn)線·數(shù)學(xué)(學(xué)生用書) 題型:044
已知二次函數(shù)f(x)=ax2+bx(a,b為是常數(shù)且a≠0)滿足條件:f(2)=0且方程f(x)=x有等根.
(1)求f(x)的解析式;
(2)問(wèn)是否存在實(shí)數(shù)m,n(m<n),使f(x)的定義域和值域分別為[m,n]和[2m,2n],如存在,求出m,n的值;如不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:成功之路·突破重點(diǎn)線·數(shù)學(xué)(學(xué)生用書) 題型:044
已知二次函數(shù)f(x)=ax2+bx+c(a>0)的圖象與x軸有兩個(gè)不同點(diǎn)的公共點(diǎn),若f(c)=0,且0<x<c時(shí),f(x)>0.
(Ⅰ)試比較與c的大。
(Ⅱ)證明:-2<b<-1;
(Ⅲ)當(dāng)c>1,t>0時(shí),求證:++>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:中學(xué)教材標(biāo)準(zhǔn)學(xué)案 數(shù)學(xué) 高二上冊(cè) 題型:044
解答題
已知二次函數(shù)f(x)=ax2+bx+1(a,b∈R,a>0),設(shè)方程f(x)=x的兩個(gè)實(shí)根為x1和x2.
(1)如果x1<2<x2<4,設(shè)函數(shù)f(x)的對(duì)稱軸為x=x0,求證:x0>-1;
(2)如果|x1|<2,|x2-x1|=2,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:安徽省示范高中銅陵三中2006-2007學(xué)年度高三數(shù)學(xué)理科第一次診斷性考試卷 新課標(biāo) 人教版 人教版新課標(biāo) 題型:044
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:龍門中學(xué)、新豐一中、連平中學(xué)三校聯(lián)考試題、高三數(shù)學(xué)(理) 題型:044
|
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com