已知函數(shù)

(1)求函數(shù)f(x)的單調(diào)區(qū)間和極值;

(2)若函數(shù)y=g(x)對任意x滿足g(x)=f(4-x),求證:當x>2,f(x)>g(x);

(3)若x1≠x2,且,求證:

答案:
解析:

  解:(1)∵,∴  (2分)

  令=0,解得

  ∴內(nèi)是增函數(shù),在內(nèi)是減函數(shù)  (3分)

  ∴當時,取得極大值  (4分)

  (2)證明:,,

  ∴  (6分)

  當時,<0,>4,從而<0,

  ∴>0,是增函數(shù).

    (8分)

  (3)證明:∵內(nèi)是增函數(shù),在內(nèi)是減函數(shù).

  ∴當,且,、不可能在同一單調(diào)區(qū)間內(nèi).

  不妨設(shè),由⑵可知,

  又,∴

  ∵,∴

  ∵,且在區(qū)間內(nèi)為增函數(shù),

  ∴,即  (12分)


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東濟南外國語高三上學(xué)期期中考試理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù).

(1)求函數(shù)的最小正周期;

(2)求函數(shù)在區(qū)間上的函數(shù)值的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年山東濟南外國語高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù).

(1)求函數(shù)的最小正周期;

(2)求函數(shù)在區(qū)間上的函數(shù)值的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省南京市、鹽城市高三第一次模擬考試數(shù)學(xué)(解析版) 題型:解答題

(本小題滿分14分)

已知函數(shù).

(1)求函數(shù)的最小正周期;

(2)求函數(shù)在區(qū)間上的函數(shù)值的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年江蘇省常州高級中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

問題1:已知函數(shù),則…+f(9)+f(10)=______.
我們?nèi)舭衙恳粋函數(shù)值計算出,再求和,對函數(shù)值個數(shù)較少時是常用方法,但函數(shù)值個數(shù)較多時,運算就較繁鎖.觀察和式,我們發(fā)現(xiàn)、…、可一般表示為=為定值,有此規(guī)律從而很方便求和,請求出上述結(jié)果,并用此方法求解下面問題:
問題2:已知函數(shù),求f(-2007)+f(-2006)+…+f(-1)+f(0)+f(1)+…+f(2007)+f(2008)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006-2007學(xué)年江蘇省常州高級中學(xué)高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

問題1:已知函數(shù),則…+f(9)+f(10)=______.
我們?nèi)舭衙恳粋函數(shù)值計算出,再求和,對函數(shù)值個數(shù)較少時是常用方法,但函數(shù)值個數(shù)較多時,運算就較繁鎖.觀察和式,我們發(fā)現(xiàn)、…、、可一般表示為=為定值,有此規(guī)律從而很方便求和,請求出上述結(jié)果,并用此方法求解下面問題:
問題2:已知函數(shù),求f(-2007)+f(-2006)+…+f(-1)+f(0)+f(1)+…+f(2007)+f(2008)的值.

查看答案和解析>>

同步練習冊答案