一個盒子中裝有形狀大小相同的5張卡片,上面分別標有數字1,2,3,4,5,甲乙兩人分別從盒子中隨機不放回的各抽取一張.
(Ⅰ)寫出所有可能的結果,并求出甲乙所抽卡片上的數字之和為偶數的概率;
(Ⅱ)以盒子中剩下的三張卡片上的數字作為邊長來構造三角形,求出能構成三角形的概率.
(Ⅰ)甲乙兩人分別從盒子中隨機不放回的各抽取一張,基本事件有
共20個;
.
(Ⅱ).
【解析】
試題分析:(Ⅰ)借助于“樹圖法”可得基本事件有:
共20個
設事件“甲乙所抽卡片上的數字之和為偶數”
其中甲乙所抽卡片上的數字之和為偶數的有:共8個,利用概率計算公式計算.
(Ⅱ)剩下的三邊長包含的基本事件為:
共10個;
其中“剩下的三張卡片上的數字作為邊長能構成三角形”的有:共3個.
解答此類問題,關鍵是計算正確“事件數”,“列表法”“樹圖法”“坐標法”等,是常用方法.
試題解析:(Ⅰ)甲乙兩人分別從盒子中隨機不放回的各抽取一張,基本事件有
共20個 2分
設事件“甲乙所抽卡片上的數字之和為偶數”
則事件包含的基本事件有共8個 4分
所以. 6分
(Ⅱ)剩下的三邊長包含的基本事件為:
共10個; 8分
設事件“剩下的三張卡片上的數字作為邊長能構成三角形“
則事件包含的基本事件有:共3個 10分
所以. 12分
備注:第二問也可看做20個基本事件,重復一倍。
考點:古典概型概率的計算
科目:高中數學 來源:2014屆四川省高三第一次月考理科數學試卷(解析版) 題型:解答題
一個盒子中裝有分別標有數字1、2、3、4的4個大小、形狀完全相同的小球,現(xiàn)從中有放回地隨機抽取2個小球,抽取的球的編號分別記為、,記.
(Ⅰ)求取最大值的概率;
(Ⅱ)求的分布列及數學期望.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com