小李練習(xí)射擊,每次擊中目標(biāo)的概率為
1
3
,用ξ表示小李射擊5次擊中目標(biāo)的次數(shù),則ξ的均值Eξ與方差Dξ的值分別是( 。
A、
5
3
,
9
10
B、
5
3
,
5
3
C、
5
3
,
10
9
D、
5
3
2
9
考點:極差、方差與標(biāo)準(zhǔn)差
專題:計算題,概率與統(tǒng)計
分析:利用二項分布的期望與方差的公式進行計算即可.
解答: 解:根據(jù)題意,知ξ~B(5,
1
3
),
∴Eξ=5×
1
3
=
5
3

Dξ=5×
1
3
×(1-
1
3
)=
10
9

故選:C.
點評:本題考查了離散型隨機變量的數(shù)學(xué)期望和方差的問題,解題時可以直接利用二項分布的期望與方差的公式計算,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}是以2為首項,1為公差的等差數(shù)列,{bn}是以1為首項,2為公比的等比數(shù)列,則ab1+ab2+ab3+ab4+ab5=( 。
A、26B、36C、40D、46

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
3m2
+
y2
n2
=1和雙曲線
x2
2m2
-
y2
3n2
=1有公共焦點,那么雙曲線的離心率為(  )
A、
5
4
B、
22
2
C、
22
4
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f′(x0)=-3,則
lim
h→0
f(x0+h)-f(x0-3h)
h
=( 。
A、-3B、-12C、-9D、-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①因為(4+3i)-(2+3i)=2>0,所以4+3i>2+3i;
②由
a
b
=
a
c
兩邊同除
a
,可得
b
=
c
;
③數(shù)列1,4,7,10,…,3n+7的一個通項公式是an=3n+7;
④演繹推理是由一般到特殊的推理,類比推理是由特殊到特殊的推理.
其中正確命題的個數(shù)有( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在(0,+∞)上的可導(dǎo)函數(shù)f(x)滿足:xf′(x)+f(x)<0且f(1)=1,則不等式xf(x)>1的解集為(  )
A、(-∞,1)
B、(0,1)
C、(1,+∞)
D、(0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是一個等差數(shù)列,且a2=7,a5=1.
(1)求{an}的通項an
(2)求數(shù)列{an}前多少項和最大.
(3)若bn=an+2n,求數(shù)列{bn}的前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2
(1)求{an}的通項公式an;
(2)設(shè)bn=
1
anan+1
,求證b1+b2+b3+…+bn
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若sinθ=
3
3
,求
cos(π-θ)
cosθ[sin(
3
2
π-θ)-1]
+
cos(2π-θ)
cos(π+θ)sin(
π
2
+θ)-sin(
2
+θ)
的值.

查看答案和解析>>

同步練習(xí)冊答案