若實(shí)數(shù)x,y滿足約束條件:
x≤1
y≤2
2x+y-2≥0
,則z=x+2y的最小值為
 
考點(diǎn):簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,利用z的幾何意義即可得到結(jié)論.
解答: 解:作出不等式組對應(yīng)的平面區(qū)域,
由z=x+2y,得y=-
1
2
x+
z
2
,平移直線y=-
1
2
x+
z
2
,由圖象可知當(dāng)直線經(jīng)過點(diǎn)A時(shí),
直線y=-
1
2
x+
z
2
的截距最小,此時(shí)z最小,
x=1
2x+y-2=0
,得
x=1
y=0
,即A(1,0)
此時(shí)z=1+2×0=1.
故答案為:1
點(diǎn)評:本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

x、y滿足條件
0≤x≤1
0≤y≤2
2y-x≥1
,設(shè)z=2y-2x+4,則z的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某地一天0~24時(shí)的氣溫y(單位:℃)與時(shí)間t(單位:h)的關(guān)系滿足函數(shù)y=6sin(
π
12
t-
3
)+20(t∈[0,24]),則這一天的最低氣溫是
 
℃.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

語文、數(shù)學(xué)、英語、物理、化學(xué)課代表共5位同學(xué)站成一排,數(shù)學(xué)課代表必須站在正中間,有
 
種站法(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)i是虛數(shù)單位,計(jì)算i+i2+i3+i4=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡asin0°+bcos90°=( 。
A、aB、bC、a+bD、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有4名男生和4名女生排成一排,且男生和女生逐一相間的排法共有(  )
A、A
 
4
4
+A
 
5
5
B、A
 
4
4
A
 
5
5
C、2A
 
4
4
D、2A
 
4
4
A
 
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

5名應(yīng)屆畢業(yè)生報(bào)考三所高校,每人報(bào)且僅報(bào)一所院校,則不同的報(bào)名方法的種數(shù)是( 。
A、35
B、53
C、
A
3
5
D、
C
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠生產(chǎn)某種零件,零件質(zhì)量采用電腦自動化控制,某日生產(chǎn)100個(gè)零件,記產(chǎn)生出第n個(gè)零件時(shí)電腦顯示的前n個(gè)零件的正品率為f(n),則下列關(guān)系式不可能成立的是(  )
A、f(1)<f(2)<…<f(100)
B、存在n∈{1,2,…,99},使得f(n)=2f(n+1)
C、存在n∈{1,2,…,98},使得f(n)<f(n+1),且f(n+1)=f(n+2)
D、f(1)=f(2)=…=f(100)

查看答案和解析>>

同步練習(xí)冊答案