如圖,已知過(guò)原點(diǎn)Ox軸正方向出發(fā)順時(shí)針轉(zhuǎn)60°得到射線t,點(diǎn)Ax,y)在射線tx0,y0,設(shè)|OA|m;又點(diǎn)B,)在射線y00)上移動(dòng);設(shè)點(diǎn)P為第四象限的動(dòng)點(diǎn),若·0,且·,·,成等差數(shù)列.

(Ⅰ)求動(dòng)點(diǎn)P的軌跡方程,并說(shuō)明軌跡C的形狀;

(Ⅱ)已知?jiǎng)又本l與曲線C有三個(gè)不同的交點(diǎn)MN,且v,v=(2,1),設(shè) Q,)為線段MN的中點(diǎn),求的取值范圍

 

答案:
解析:

解:(Ⅰ),∴  ,設(shè),

∵  ,  ∴  軸,

  ∴  ,,,,,,由,,成等差數(shù)列.

  得,即

  ∴  P的軌跡C為以(,)為圓心,半徑為的圓在y軸下方的部分.

(Ⅱ)設(shè),,,直線代入到軌跡C的方程,消x得:,由,,

解得   ,又,

∴ 

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•湖北)如圖,已知橢圓C1與C2的中心在坐標(biāo)原點(diǎn)O,長(zhǎng)軸均為MN且在x軸上,短軸長(zhǎng)分別為2m,2n(m>n),過(guò)原點(diǎn)且不與x軸重合的直線l與C1,C2的四個(gè)交點(diǎn)按縱坐標(biāo)從大到小依次為A,B,C,D,記λ=
mn
,△BDM和△ABN的面積分別為S1和S2
(Ⅰ)當(dāng)直線l與y軸重合時(shí),若S1=λS2,求λ的值;
(Ⅱ)當(dāng)λ變化時(shí),是否存在與坐標(biāo)軸不重合的直線l,使得S1=λS2?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

如圖,已知過(guò)原點(diǎn)Ox軸正方向出發(fā)順時(shí)針轉(zhuǎn)60°得到射線t,點(diǎn)Ax,y)在射線tx0,y0,設(shè)|OA|m;又點(diǎn)B)在射線y00)上移動(dòng);設(shè)點(diǎn)P為第四象限的動(dòng)點(diǎn),若·0,且·,·成等差數(shù)列.

(Ⅰ)求動(dòng)點(diǎn)P的軌跡方程,并說(shuō)明軌跡C的形狀;

(Ⅱ)已知?jiǎng)又本l與曲線C有三個(gè)不同的交點(diǎn)M、N,且v,v=(2,1),設(shè) Q,)為線段MN的中點(diǎn),求的取值范圍

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知過(guò)原點(diǎn)O從x軸正方向出發(fā)逆時(shí)針旋轉(zhuǎn)240°得到射線t,點(diǎn)A(x,y)在射線t上(x<0,y<0=,設(shè)|OA|=m,又知點(diǎn)B在射線y=0(x<0=上移動(dòng),設(shè)P為第三象限內(nèi)的動(dòng)點(diǎn),若·=0,且··,||2成等差數(shù)列.

(1)試問(wèn)點(diǎn)P的軌跡是什么曲線?

(2)已知直線l的斜率為,若直線l與曲線C有兩個(gè)不同的交點(diǎn)M,N,設(shè)線段MN的中點(diǎn)為Q,求點(diǎn)Q的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年湖北省高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,已知橢圓C1與C2的中心在坐標(biāo)原點(diǎn)O,長(zhǎng)軸均為MN且在x軸上,短軸長(zhǎng)分別為2m,2n(m>n),過(guò)原點(diǎn)且不與x軸重合的直線l與C1,C2的四個(gè)交點(diǎn)按縱坐標(biāo)從大到小依次為A,B,C,D,記,△BDM和△ABN的面積分別為S1和S2
(Ⅰ)當(dāng)直線l與y軸重合時(shí),若S1=λS2,求λ的值;
(Ⅱ)當(dāng)λ變化時(shí),是否存在與坐標(biāo)軸不重合的直線l,使得S1=λS2?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案