設(shè)函數(shù)f(x)=kx+2,不等式[f(x)]2<36的解集為(-1,2).
(1)求k的值;
(2)求不等式loga
6f(x)
<loga(1-x)(0<a<1)
的解集.
分析:(1)原不等式轉(zhuǎn)化為:(kx+2)2<36,即k2x2+4kx-32<0,用韋達(dá)定理求解.
(2)根據(jù)f(x)=-4x+2將原不等式轉(zhuǎn)化為:loga
6
-4x+2
<loga(1-x)
再利用對數(shù)函數(shù)的單調(diào)性求解,要注意函數(shù)的定義域.
解答:解:(1)∵(kx+2)2<36,
即k2x2+4kx-32<0(
由題設(shè)可得:
-
4k
k2
=-1+2
-
32
k2
=-1×2
,
解得k=-4
(2)f(x)=-4x+2
loga
6
f(x)
<loga(1-x)(0<a<1)

loga
6
-4x+2
<loga(1-x)

-4x+2>0
1-x>0
6
-4x+2
>1-x
,
x<
1
2
x<1
(2x+1)(x-2)
2x-1
>0?-
1
2
<x<
1
2
或x>2

∴原不等式的解集為{x|-
1
2
<x<
1
2
}
點評:本題主要考查一元二次不等式和對數(shù)不等式的解法,注意所涉及函數(shù)的定義域.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

4、設(shè)函數(shù)f(x)=kx+1,且f(2)=3,則k=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年四川省瀘州市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:選擇題

設(shè)函數(shù)f(x)=kx+1,且f(2)=3,則k=( )
A.-1
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省揭陽一中高三(上)10月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)函數(shù)f(x)=kx+2,不等式[f(x)]2<36的解集為(-1,2).
(1)求k的值;
(2)求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)一輪精品復(fù)習(xí)學(xué)案:6.3 單元總結(jié)與測試(解析版) 題型:解答題

設(shè)函數(shù)f(x)=kx+2,不等式[f(x)]2<36的解集為(-1,2).
(1)求k的值;
(2)求不等式的解集.

查看答案和解析>>

同步練習(xí)冊答案