【題目】已知直線l:mx﹣y=1,若直線l與直線x﹣(m﹣1)y=2垂直,則m的值為 , 動直線l:mx﹣y=1被圓C:x2﹣2x+y2﹣8=0截得的最短弦長為

【答案】 ;2
【解析】解:∵直線l:mx﹣y=1,直線l與直線x﹣(m﹣1)y=2垂直,

∴m×1+(﹣1)×[﹣(m﹣1)]=0,

解得m=

∵圓C:x2﹣2x+y2﹣8=0的圓心C(1,0),半徑r= =3,

圓心C(1,0)到直線l:mx﹣y=1的距離d= ,

∴弦長為:2 =2 =2

∴當且僅當m=﹣1時,動直線l:mx﹣y=1被圓C:x2﹣2x+y2﹣8=0截得的最短弦長為2

所以答案是:

【考點精析】利用直線與圓的三種位置關系對題目進行判斷即可得到答案,需要熟知直線與圓有三種位置關系:無公共點為相離;有兩個公共點為相交,這條直線叫做圓的割線;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的參數(shù)方程為 (θ為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,點P的極坐標為(2 , ).
(Ⅰ)求直線l以及曲線C的極坐標方程;
(Ⅱ)設直線l與曲線C交于A,B兩點,求△PAB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,AC=6,cosB= ,C=
(1)求AB的長;
(2)求cos(A﹣ )的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sinx,x∈(0,2π),點P(x,y)是函數(shù)f(x)圖象上任一點,其中0(0,0),A(2π,0),記△OAP的面積為g(x),則g′(x)的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=m﹣|x﹣2|,m∈R,且f(x+2)≥0的解集為[﹣1,﹣1].
(1)求m的值;
(2)若a,b,c∈R,且 + + =m,求證:a2+b2+c2≥36.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓 ,直線

(1)求證:對任意的 ,直線 與圓 恒有兩個交點;
(2)求直線 被圓 截得的線段的最短長度,及此時直線 的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設 為實數(shù), , .記集合 .若 , 分別為集合S,T的元素個數(shù),則下列結論不可能的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l:x+2y-2=0,試求:
(1)點P(-2,-1)關于直線l的對稱點坐標;
(2)直線 關于直線l對稱的直線l2的方程;
(3)直線l關于點(1,1)對稱的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直線l1 , l2分別是函數(shù)f(x)=sinx,x∈[0,π]圖象上點P1 , P2處的切線,l1 , l2垂直相交于點P,且l1 , l2分別與y軸相交于點A,B,則△PAB的面積為

查看答案和解析>>

同步練習冊答案