設{an}是由正數(shù)組成的等比數(shù)列,Sn為其前n項和,已知a2×a4=1,S3=7,則a1+a2=( )
A.8
B.6
C.5
D.
【答案】分析:由題意可得 ,解得 =1,,由此求得a1+a1q的值,即為所求.
解答:解:由題意可得 ,解得 =1,,
∴a1+a1q=6,即 a1+a2=6,
故選B.
點評:本題主要考查等比數(shù)列的定義和性質,等比數(shù)列的通項公式,等比數(shù)列的前n項和公式的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設{an}是由正數(shù)組成的等差數(shù)列,{bn}是由正數(shù)組成的等比數(shù)列,且a1=b1,a2003=b2003,則必有( 。
A、a1002>b1002B、a1002=b1002C、a1002≥b1002D、a1002≤b1002

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設{an}是由正數(shù)組成的等比數(shù)列,Sn是其前n項和,證明:
log0.  5Sn+log0. 5Sn+22
>log0. 5Sn+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設{an}是由正數(shù)組成的等比數(shù)列,且a5a6=81,log3a1+log3a2+…+log3a10的值是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•鐘祥市模擬)設{an}是由正數(shù)組成的等差數(shù)列,Sn是其前n項和
(1)若Sn=20,S2n=40,求S3n的值;
(2)若互不相等正整數(shù)p,q,m,使得p+q=2m,證明:不等式SpSq<Sm2成立;
(3)是否存在常數(shù)k和等差數(shù)列{an},使kan2-1=S2n-Sn+1恒成立(n∈N*),若存在,試求出常數(shù)k和數(shù)列{an}的通項公式;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設{an}是由正數(shù)組成的等比數(shù)列,Sn為其前n項和,已知a2×a4=1,S3=7,則a1+a2=( 。

查看答案和解析>>

同步練習冊答案