【題目】把編號為1,23,45的五個大小、形狀相同的小球,隨機放入編號為1,23,45的五個盒子里.每個盒子里放入一個小球.

1)求恰有兩個球的編號與盒子的編號相同的概率;

2)設恰有個小球的編號與盒子編號相同,求隨機變量的分布列與期望.

【答案】12)見解析,數(shù)學期望為1

【解析】

滿足條件的放法共有種,恰有兩個球的編號與盒子的編號相同的放法有種,由古典概率公式可得所求概率.

寫出隨機變量X的可能值以及取各值的概率,即可得到分布列,再利用公式求期望即可.

1)記恰有2個小球與盒子編號相同為事件.

5個小球隨機放入五個盒子中,每個盒子放一個共有120種不同的放法.

事件共有種放法,所以.

答:恰有2個盒子與小球編號相同的概率為.

2)隨機變量的可能值為0,1,2,35.

,

,,.

0

1

2

3

5

所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】第三屆移動互聯(lián)創(chuàng)新大賽,于2017年3月~10月期間舉行,為了選出優(yōu)秀選手,某高校先在計算機科學系選出一種子選手再從全校征集出3位志愿者分別與進行一場技術對抗賽,根據(jù)以往經(jīng)驗, 與這三位志愿者進行比賽一場獲勝的概率分別為,且各場輸贏互不影響.

(1)求甲恰好獲勝兩場的概率;

(2)求甲獲勝場數(shù)的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,直線l的參數(shù)方程為t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為,直線l與曲線C交于AB兩個不同的點.

1)求曲線C的直角坐標方程;

2)若點P為直線lx軸的交點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,是邊長為4的正方形,平面,分別為的中點.

1)證明:平面.

2)若,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的單調區(qū)間;

2)若上存在一點,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在貫徹中共中央、國務院關于精準扶貧政策的過程中,某單位在某市定點幫扶甲、乙兩村各戶貧困戶.為了做到精準幫扶,工作組對這戶村民的年收入情況、勞動能力情況.子女受教育情況、危舊房情況、患病情況等進行調查.并把調查結果轉化為各戶的貧困指標.將指標按照,,,,分成五組,得到如圖所示的頻率分布直方圖.規(guī)定若,則認定該戶為“絕對貧困戶”,否則認定該戶為“相對貧困戶”,且當時,認定該戶為“低收入戶”;當時,認定該戶為“亟待幫助戶".已知此次調查中甲村的“絕對貧困戶”占甲村貧困戶的.

1)完成下面的列聯(lián)表,并判斷是否有的把握認為絕對貧困戶數(shù)與村落有關:

甲村

乙村

總計

絕對貧困戶

相對貧困戶

總計

2)某干部決定在這兩村貧困指標處于的貧困戶中,隨機選取戶進行幫扶,用表示所選戶中“亟待幫助戶”的戶數(shù),求的分布列和數(shù)學期望.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為大力提倡厲行節(jié)約,反對浪費,衡陽市通過隨機詢問100名性別不同的居民是否做到光盤行動,得到如右列聯(lián)表及附表:經(jīng)計算:參照附表,得到的正確結論是(


做不到光盤行動

做到光盤行動


45

10


30

15

k

A.在犯錯誤的概率不超過1%的前提下,認為該市民能否做到光盤行動與性別有關

B.在犯錯誤的概率不超過1%的前提下,認為該市民能否做到光盤行動與性別無關

C.90%以上的把握認為該市民能否做到光盤行動與性別有關

D.90%以上的把握認為該市民能否做到光盤行動與性別無關

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,拋物線的焦點為,過點的直線與拋物線交于點、,直線、分別與拋物線交于點、.

1)求拋物線的標準方程;

2)求的面積之和的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐中,平面平面ABCD,EPA的中點.

(Ⅰ)求證:平面PBC;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步練習冊答案