精英家教網 > 高中數學 > 題目詳情

甲、乙兩人各射擊一次,擊中目標的概率分別是,假設兩人每次射擊是否擊中目標相互之間沒有影響  

(Ⅰ)求甲射擊5次,有兩次未擊中目標的概率;

(Ⅱ)求兩人各射擊4次,甲恰好擊中目標2次,且乙恰好擊中目標3次的概率

(I)(II)


解析:

(I)設“甲射擊5次,有兩次未擊中目標”為事件A,則

答:甲射擊5次,有兩次未擊中目標的概率為     …………5分

   (Ⅱ)設“兩人各射擊4次,甲恰好擊中目標2次,且乙恰好擊中目標3次”為事件B,則

    答:兩人各射擊4次,甲恰好擊中目標2次,且乙恰好擊中目標3次的概率為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

甲、乙兩人各射擊一次,擊中目標的概率分別是
2
3
3
4
.假設兩人射擊是否擊中目標,相互之間沒有影響;每人各次射擊是否擊中目標,相互之間也沒有影響.
(1)求甲射擊4次,至少1次未擊中目標的概率;
(2)求兩人各射擊4次,甲恰好擊中目標2次且乙恰好擊中目標3次的概率;
(3)假設某人連續(xù)2次未擊中目標,則停止射擊.問:乙恰好射擊5次后,被中止射擊的概率是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

甲、乙兩人各射擊一次,擊中目標的概率分別是
2
3
3
4
,假設兩人每次射擊是否擊中目標相互之間沒有影響.
(Ⅰ)求甲射擊5次,有兩次未擊中目標的概率;
(Ⅱ)假設某人連續(xù)2次未擊中目標,則中止其射擊,求乙恰好射擊5次后,被中止射擊的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

甲、乙兩名同學參加一項射擊游戲,兩人約定,其中任何一人每射擊一次,擊中目標得2分,未擊中目標得0分.若甲、乙兩名同學射擊的命中率分別為
3
5
和p,且甲、乙兩人各射擊一次所得分數之和為2的概率為
9
20
,假設甲、乙兩人射擊互不影響
(1)求p的值;
(2)記甲、乙兩人各射擊一次所得分數之和為ξ,求ξ的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

甲射手擊中靶心的概率為
1
3
,乙射手擊中靶心的概率為
1
2
,甲、乙兩人各射擊一次,那么,甲、乙不全擊中靶心的概率為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

甲、乙兩人練習射擊,命中目標的概率分別為
1
2
1
3
,甲、乙兩人各射擊一次,有下列說法:
①目標恰好被命中一次的概率為
1
2
+
1
3
;
②目標恰好被命中兩次的概率為
1
2
×
1
3
; 
③目標被命中的概率為
1
2
×
2
3
+
1
2
×
1
3
;  
④目標被命中的概率為1-
1
2
×
2
3

以上說法正確的序號依次是( 。

查看答案和解析>>

同步練習冊答案