經(jīng)過(guò)點(diǎn)且與直線相切的動(dòng)圓的圓心軌跡為.點(diǎn)在軌跡上,且關(guān)于軸對(duì)稱,過(guò)線段(兩端點(diǎn)除外)上的任意一點(diǎn)作直線,使直線與軌跡在點(diǎn)處的切線平行,設(shè)直線與軌跡交于點(diǎn)、

(1)求軌跡的方程;

(2)證明:;

(3)若點(diǎn)到直線的距離等于,且△的面積為20,求直線的方程.

 

【答案】

(1);(2)詳見(jiàn)解析;(3).

【解析】

試題分析:(1)方法1是利用直接法,設(shè)動(dòng)點(diǎn)坐標(biāo)為,根據(jù)題中條件列式并化簡(jiǎn)進(jìn)而求出動(dòng)點(diǎn)的軌跡方程;方法2是將問(wèn)題轉(zhuǎn)化為圓心到定點(diǎn)的距離等于點(diǎn)到定直線的距離,利用拋物線的定義寫出軌跡的方程;(2)由于軸,利用直線與直線的斜率互為相反數(shù)證明;(3)方法1是先將的方程與拋物線的方程聯(lián)立求出點(diǎn)的坐標(biāo),并根據(jù)一些幾何性質(zhì)求出、,并將的面積用點(diǎn)的坐標(biāo)表示以便于求出點(diǎn)的坐標(biāo),結(jié)合點(diǎn)的坐標(biāo)求出直線的方程;方法2是利用(2)中的條件與結(jié)論,利用直線確定點(diǎn)和點(diǎn)坐標(biāo)之間的關(guān)系,借助弦長(zhǎng)公式求出、,并將的面積用點(diǎn)的坐標(biāo)表示以便于求出點(diǎn)的坐標(biāo),結(jié)合點(diǎn)的坐標(biāo)求出直線的方程.

試題解析:(1)方法1:設(shè)動(dòng)圓圓心為,依題意得,.        1分

整理,得.所以軌跡的方程為.                   2分

方法2:設(shè)動(dòng)圓圓心為,依題意得點(diǎn)到定點(diǎn)的距離和點(diǎn)到定直線的距離相等,

根據(jù)拋物線的定義可知,動(dòng)點(diǎn)的軌跡是拋物線.                    1分

且其中定點(diǎn)為焦點(diǎn),定直線為準(zhǔn)線.

所以動(dòng)圓圓心的軌跡的方程為.    2分

(2)由(1)得,即,則

設(shè)點(diǎn),由導(dǎo)數(shù)的幾何意義知,直線的斜率為

.          3分

由題意知點(diǎn).設(shè)點(diǎn),

,

.                  4分

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013092000070911954607/SYS201309200008373805666986_DA.files/image032.png">,.           5分

由于,即.         6分

所以.                               7分

(3)方法1:由點(diǎn)的距離等于,可知.            8分

不妨設(shè)點(diǎn)上方(如圖),即,直線的方程為:

解得點(diǎn)的坐標(biāo)為.                       10分

所以

由(2)知,同理可得.            11分

所以△的面積,

解得.                                   12分

當(dāng)時(shí),點(diǎn)的坐標(biāo)為,,

直線的方程為,即.                13分

當(dāng)時(shí),點(diǎn)的坐標(biāo)為,,

直線的方程為,即.               14分

方法2:由點(diǎn)的距離等于,可知.             8分

由(2)知,所以,即

由(2)知,

所以

.        ①

由(2)知.           ②

不妨設(shè)點(diǎn)上方(如圖),即,由①、②解得          10分

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013092000070911954607/SYS201309200008373805666986_DA.files/image067.png">,

同理.                               11分

以下同方法1.

考點(diǎn):直接法求軌跡方程,拋物線的定義,函數(shù)圖象的切線方程的求解,斜率公式、弦長(zhǎng)公式

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

經(jīng)過(guò)點(diǎn)且與直線相切的動(dòng)圓的圓心軌跡為.點(diǎn)在軌跡上,且關(guān)于軸對(duì)稱,過(guò)線段(兩端點(diǎn)除外)上的任意一點(diǎn)作直線,使直線與軌跡在點(diǎn)處的切線平行,設(shè)直線與軌跡交于點(diǎn)、

(1)求軌跡的方程;

(2)證明:;

(3)若點(diǎn)到直線的距離等于,且△的面積為20,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆河南省方城一高高三第一次調(diào)研(月考)考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

經(jīng)過(guò)點(diǎn)且與直線相切的動(dòng)圓的圓心軌跡為.點(diǎn)在軌跡上,且關(guān)于軸對(duì)稱,過(guò)線段(兩端點(diǎn)除外)上的任意一點(diǎn)作直線,使直線與軌跡在點(diǎn)處的切線平行,設(shè)直線與軌跡交于點(diǎn).

(1)求軌跡的方程;

(2)證明:;

(3)若點(diǎn)到直線的距離等于,且的面積為20,求直線的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省廣州市畢業(yè)班綜合測(cè)試(二)理科數(shù)學(xué)試卷(解析版) 題型:解答題

經(jīng)過(guò)點(diǎn)且與直線相切的動(dòng)圓的圓心軌跡為.點(diǎn)、在軌跡上,且關(guān)于軸對(duì)稱,過(guò)線段(兩端點(diǎn)除外)上的任意一點(diǎn)作直線,使直線與軌跡在點(diǎn)處的切線平行,設(shè)直線與軌跡交于點(diǎn)、

(1)求軌跡的方程;

(2)證明:

(3)若點(diǎn)到直線的距離等于,且△的面積為20,求直線的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河北省高三第十次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)的導(dǎo)數(shù)為實(shí)數(shù),.

(Ⅰ)若在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;

(Ⅱ)在(Ⅰ)的條件下,求經(jīng)過(guò)點(diǎn)且與曲線相切的直線的方程;

(Ⅲ)設(shè)函數(shù),試判斷函數(shù)的極值點(diǎn)個(gè)數(shù)。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案