已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b<0)的右頂點(diǎn)、右焦點(diǎn)分別為A、F,它的左準(zhǔn)線與x軸的交點(diǎn)為B,若A是線段BF的中點(diǎn),則雙曲線C的離心率為
 
分析:先求出A、F、B 的坐標(biāo),根據(jù)A是線段BF的中點(diǎn),得到2a=c-
a2
c
,解方程求出e.
解答:解:由題意得,A(a,0)、F(c,0),B (-
a2
c
,0),
∵A是線段BF的中點(diǎn),
∴2a=c-
a2
c
,c2-2ac-a2=0,e2-2e-1=0,又e>1,
∴e=
2
+1,
故答案為
2
+1.
點(diǎn)評(píng):本題考查雙曲線的定義和雙曲線的標(biāo)準(zhǔn)方程,以及雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•許昌三模)已知雙曲線c:
x2
a
-
y2
b
=1(a>.,b>0)的半焦距為c,過(guò)左焦點(diǎn)且斜率為1的直線與雙曲線C的左、右支各有一個(gè)交點(diǎn),若拋物線y2=4cx的準(zhǔn)線被雙曲線截得的線段長(zhǎng)大于
2
2
3
be2.(e為雙曲線c的離心率),則e的取值范同是
2
,
3
2
,
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•寧波模擬)已知雙曲線
x2
a
-
y2
a2+a+1
=1
的離心率的范圍是數(shù)集M,設(shè)p:“k∈M”; q:“函數(shù)f(x)=
lg
x-1
x-2
  x<1
2x-k       x≥1
的值域?yàn)镽”.則P是Q成立的(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:寧波模擬 題型:單選題

已知雙曲線
x2
a
-
y2
a2+a+1
=1
的離心率的范圍是數(shù)集M,設(shè)p:“k∈M”; q:“函數(shù)f(x)=
lg
x-1
x-2
  x<1
2x-k       x≥1
的值域?yàn)镽”.則P是Q成立的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知雙曲線c:
x2
a
-
y2
b
=1(a>.,b>0)的半焦距為c,過(guò)左焦點(diǎn)且斜率為1的直線與雙曲線C的左、右支各有一個(gè)交點(diǎn),若拋物線y2=4cx的準(zhǔn)線被雙曲線截得的線段長(zhǎng)大于
2
2
3
be2.(e為雙曲線c的離心率),則e的取值范同是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案