在棱長為1的正方體ABCD-A1B1C1D1的8個頂點中選2個點作為向量的頂點和終點,則其中:單位向量共有
 
個與向量
BC
相反的向量,模長為
3
的向量共有
 
個.
考點:平行向量與共線向量,相等向量與相反向量
專題:空間位置關系與距離,空間向量及應用
分析:利用單位向量、相反向量的定義即可得出共3個與向量
BC
相反的向量;由于正方體的對角線長度為
3
,即可得出模長為
3
的向量共有8個.
解答: 解:如圖所示,
其中:單位向量有
DA
C1B1
D1A1
共3個與向量
BC
相反的向量,
模長為
3
的向量共有
BD1
,
D1B
AC1
,
C1A
A1C
,
CA1
,
B1D
,
DB1
共有8個.
故答案分別為3,8.
點評:本題考查了單位向量、相反向量的定義、正方體的對角線長度的計算方法,考查了推理能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}中,a1=5,an+1=an+5,那么這個數(shù)列的通項公式是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a∈R,滿足sinα+sin2α=1,求下面各式的值:
(1)cos2α+cos4α;
(2)cos2α+cos6α
(3)cos2α+cos6α+cos8α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
a
b
+
1
2
,其中
a
=(
3
sinx-cosx,-1),
b
=(cosx,1).
(Ⅰ)求函數(shù)f(x)的最大值和最小正周期;
(Ⅱ)設△ABC的內(nèi)角A、B、C的對邊分別為a,b,c,且c=3,f(C)=0,若sin(A+C)=2sinA,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在0°到360°的范圍內(nèi),與角2006°終邊相同的角是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)過定點(1,1),且對任意實數(shù)x1,x2∈R都有f(x1+x2)=1+f(x1)+f(x2).
(Ⅰ)證明數(shù)列{f(
1
2n
)+1}(n∈N*)為等比數(shù)列;
(Ⅱ)若記數(shù)列{
1
f(n)
)(n∈N*)為{bn},其前n項和為Tn.若不等式T2n-Tn
6
35
log2(x+1)(n≥2,n∈N*)恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩平行直線分別過點(1,0)和(0,5),且距離為5,則它們的方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(4,m)在拋物線y2=2px(p>0)上,它到拋物線焦點F的距離為5,
(Ⅰ)求拋物線方程和m的值;
(Ⅱ)若m>0,直線L過點A作與拋物線只有一個公共點,求直線L方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關于直線的傾斜角與斜率,下列說法正確的是( 。
A、所有的直線都有傾斜角和斜率
B、所有的直線都有傾斜角,但不一定都有斜率
C、直線的傾斜角和斜率有時都不存在
D、所有的直線都有斜率,但不一定有傾斜角

查看答案和解析>>

同步練習冊答案