已知8sinα+5cosβ=6,sin(α+β)=
47
80
,則8cosα+5sinβ=
 
考點:兩角和與差的正弦函數(shù),兩角和與差的余弦函數(shù)
專題:三角函數(shù)的求值
分析:設(shè)8cosα+5sinβ=t,①,8sinα+5cosβ=6,②,兩式平方相加代值計算可得.
解答: 解:設(shè)8cosα+5sinβ=t,①
∵8sinα+5cosβ=6,②
①②兩式平方相加可得8+5+80(cosαsinβ+sinαcosβ)=t2+36,
∴13+80sin(α+β)=t2+36,
∴t2=80×
47
80
-23=24,
∴8cosα+5sinβ=t=±2
6

故答案為:±2
6
點評:本題考查兩角和與差的正余弦函數(shù),平方相加是解決問題的關(guān)鍵,屬基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖所示,現(xiàn)有一迷失方向的小青蛙在3處,它每跳動一次可以等可能地進入相鄰的任意一格(若它在5處,跳動一次,只能進入3處,若在3處,則跳動一次可以等機會進入1,2,4,5處),則它在第三次跳動后,首次進入5處的概率是( 。
A、
3
16
B、
1
4
C、
1
6
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

調(diào)查表明,中年人的成就感與收入、學歷、職業(yè)的滿意度的指標有極強的相關(guān)性.現(xiàn)
將這三項的滿意度指標分別記為x,y,z,并對它們進行量化:0表示不滿意,1表示基本滿意,2表示滿意,再用綜合指標w=x+y+z的值評定中年人的成就感等級:若w≥4,則成就感為一級;若2≤w≤3,則成就感為二級;若0≤w≤1,則成就感為三級.為了了解目前某群體中年人的成就感情況,研究人員隨機采訪了該群體的10名中年人,得到如下結(jié)果:
人員編號A1A2A3A4A5
(x,y,z)(1,1,2)(2,1,1)(2,2,2)(0,1,1)(1,2,1)
人員編號A6A7A8A9A10
(x,y,z)(1,2,2)(1,1,1)(1,2,2)(1,0,0)(1,1,1)
(Ⅰ)在這10名被采訪者中任取兩人,求這兩人的職業(yè)滿意度指標相同的概率;
(Ⅱ)從成就感等級是一級的被采訪者中任取一人,其綜合指標為a,從成就感等級不是一級的被采訪者中任取一人,其綜合指標為b,記隨機變量X=a-b,求X的分布列及其數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

要從5名女生,7名男生中選出5名代表,按下列要求,分別有多少中不同的選法?
(1)有2名女生入選;
(2)至少有1名女生入選;
(3)至多有2名女生入選;
(4)女生甲必須入選;
(5)男生A不能入選;
(6)女生甲、乙兩人恰有1人入選.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊長分別為a,b,c,tanA=
1
4
,tanB=
3
5
,
(1)求角C的大小;
(2)若△ABC中最長的邊為
17
,求最短邊的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的前n項和為377,項數(shù)n為奇數(shù),且前n項和中奇數(shù)項和與偶數(shù)項和之比為7:6,求中間項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}中,a7+a14=80,求前20項之和S20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知邊長為16米的正方形鋼板有一個角銹蝕,其中AE=8米,CD=12米,為了合理利用這塊鋼板,將五邊形ABCDE內(nèi)截取一個矩形塊BNPM,使點P在邊DE上,則矩形BNPM面積的最大值為
 
平方米.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

i為虛數(shù)單位,若
.
z
=
1+7i
1-i
,則z等于( 。
A、-3+4iB、3+4i
C、-3-4iD、3-4i

查看答案和解析>>

同步練習冊答案