從原點出發(fā)的某質(zhì)點M,按向量a=(0,1)移動的概率為,按向量b=(0,2)移動的概率為,則質(zhì)點M到達(0,3)的概率等于____________.

答案:  【解析】3=1+1+1=2+1=1+2,故所求P=()3+2.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

從原點出發(fā)的某質(zhì)點M,按向量
a
=(0,1)
移動的概率為
2
3
,按向量
b
=(0,2)
移動的概率為
1
3
,設M可到達點(0,n)(n=1,2,3,…)的概率為Pn
(1)求P1和P2的值;
(2)求證:Pn+2-Pn+1=-
1
3
(Pn+1-Pn)
;
(3)求Pn的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從原點出發(fā)的某質(zhì)點M,按向量
a
=(0,1)移動的概率為
2
3
,按向量
b
=(0,2)移動的概率為
1
3
,設可達到點(0,n)的概率為Pn,求:
(1)求P1和P2的值.
(2)求證:Pn+2=
1
3
Pn+
2
3
Pn+1
(3)求Pn的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從原點出發(fā)的某質(zhì)點M,按向量a=(0,1)移動的概率為,按向量b=(0,2)移動的概率為,設M可到達點(0,n)的概率為Pn

  (1)求P1和P2的值;(2)求證:=;(3)求的表達式。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從原點出發(fā)的某質(zhì)點M,按向量a=(0,1)移動的概率為,按向量b=(0,2)移動的概率為,設M可到達點(0,n)的概率為Pn

(1)求P1和P2的值;

(2)求證:Pn+2-Pn+1=-(Pn+1-Pn);

(3)求Pn的表達式.

查看答案和解析>>

同步練習冊答案