【題目】等差數(shù)列{an}的前n項(xiàng)和為Sn , 且a3+a5=a4+7,S10=100.
(1)求{an}的通項(xiàng)公式;
(2)求滿足不等式Sn<3an﹣2的n的值.
【答案】
(1)解:設(shè)數(shù)列{an}的公差為d,
由a3+a5=a4+7,得2a1+6d=a1+3d+7,①
由S10=100,得10a1+45d=100,②
解得a1=1,d=2,
所以an=a1+(n﹣1)d=2n﹣1
(2)解:因?yàn)閍1=1,an=2n﹣1,所以 =n2,
由不等式Sn<3an﹣2,得n2<3(2n﹣1)﹣2,
所以,n2﹣6n+5<0,
解得1<n<5,因?yàn)閚∈N*,
所以n的值為2,3,4.
【解析】(1)由a3+a5=a4+7,S10=100,列出方程組,求出首項(xiàng)和公差,由此能求出{an}的通項(xiàng)公式.(2)由a1=1,an=2n﹣1,求出Sn=n2 , 從而得到n2﹣6n+5<0,由此能求出n的值.
【考點(diǎn)精析】本題主要考查了等差數(shù)列的通項(xiàng)公式(及其變式)和等差數(shù)列的前n項(xiàng)和公式的相關(guān)知識(shí)點(diǎn),需要掌握通項(xiàng)公式:或;前n項(xiàng)和公式:才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:k2﹣8k﹣20≤0,命題q:方程 =1表示焦點(diǎn)在x軸上的雙曲線. (Ⅰ)命題q為真命題,求實(shí)數(shù)k的取值范圍;
(Ⅱ)若命題“p∨q”為真,命題“p∧q”為假,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知t>0,函數(shù)f(x)= ,若函數(shù)g(x)=f(f(x)﹣1)恰有6個(gè)不同的零點(diǎn),則實(shí)數(shù)t的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在無重復(fù)數(shù)字的五位數(shù)a1a2a3a4a5中,若a1<a2 , a2>a3 , a3<a4 , a4>a5時(shí)稱為波形數(shù),如89674就是一個(gè)波形數(shù),由1,2,3,4,5組成一個(gè)沒有重復(fù)數(shù)字的五位數(shù)是波形數(shù)的概率是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】不等式x2﹣4x>2ax+a對(duì)一切實(shí)數(shù)x都成立,則實(shí)數(shù)a的取值范圍是( )
A.(1,4)
B.(﹣4,﹣1)
C.(﹣∞,﹣4)∪(﹣1,+∞)
D.(﹣∞,1)∪(4,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且 asinA=( b﹣c)sinB+( c﹣b)sinC.
(1)求角A的大小;
(2)若a= ,cosB= ,D為AC的中點(diǎn),求BD的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列1,a1 , a2 , 9是等差數(shù)列,數(shù)列1,b1 , b2 , b3 , 9是等比數(shù)列,則 =( )
A.﹣
B.
C.±
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}是等差數(shù)列,{bn}是各項(xiàng)均為正數(shù)的等比數(shù)列,滿足a1=b1=1,b2﹣a3=2b3 , a3﹣2b2=﹣1
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式
(2)設(shè)cn=an+bn , n∈N* , 求數(shù)列{cn}的前n項(xiàng)和Sn .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com