已知拋物線C:y2=4x的焦點(diǎn)為F,過F作C的兩條互相垂直的弦AB、CD,設(shè)AB、CD的中點(diǎn)分別為M、N.
(Ⅰ)證明直線MN必過定點(diǎn),并求出這點(diǎn)的坐標(biāo);
(Ⅱ)分別以AB、CD為直徑作圓,求兩圓相交弦的中點(diǎn)H的軌跡方程.
解:(Ⅰ)設(shè)直線AB:, 代入得:, 2分 ∴,,故. 3分 因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/1366/0021/54e19ff8ec5accf73d6cc5e771c19e0e/C/Image114.gif" width=66 height=18>,所以將點(diǎn)坐標(biāo)中的換成,得. 4分 因此直線MN:,整理得. 故不論為何值,直線必過定點(diǎn). 6分 (Ⅱ)因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/1366/0021/54e19ff8ec5accf73d6cc5e771c19e0e/C/Image124.gif" width=33 HEIGHT=20>、都與拋物線的準(zhǔn)線相切,半徑分別為,從而 , . 8分 兩式相減并整理,得公共弦所在直線方程為: , 9分 又, 故公共弦所在直線過原點(diǎn),所以. 所以,點(diǎn)的軌跡方程是以為直徑的圓(除取直徑的兩個(gè)端點(diǎn)), 其軌跡方程為. 12分 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013年普通高等學(xué)校招生全國統(tǒng)一考試大綱卷理數(shù) 題型:013
已知拋物線C:y2=8x與點(diǎn)M(-2,2),過C的焦點(diǎn),且斜率為k的直線與C交于A,B兩點(diǎn),若·=0,則k=
A.
B.
C.
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:湖北省武漢市武昌區(qū)2012屆高三5月調(diào)研考試數(shù)學(xué)理科試題 題型:044
如圖,已知拋物線C:y2=4x,過點(diǎn)A(1,2)作拋物線C的弦AP,AQ.
(Ⅰ)若AP⊥AQ,證明直線PQ過定點(diǎn),并求出定點(diǎn)的坐標(biāo);
(Ⅱ)假設(shè)直線PQ過點(diǎn)T(5,-2),請(qǐng)問是否存在以PQ為底邊的等腰三角形APQ?若存在,求出△APQ的個(gè)數(shù)?如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山西省平遙縣高三4月質(zhì)檢理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知拋物線C:y2=4x的焦點(diǎn)為F,直線y=2x-4與C交于A,B兩點(diǎn),則cos∠AFB=( )
A. B. C.- D.-
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
已知拋物線C:y2=2px(p>0)過點(diǎn)A(1,-2).
(1)求拋物線C的方程,并求其準(zhǔn)線方程;
(2)是否存在平行于OA(O為坐標(biāo)原點(diǎn))的直線l,使得直線l與拋物線C有公共點(diǎn),且直線OA與l的距離等于?若存在,求直線l的方程;若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com