17.已知等比數(shù)列{an}的首項a1=1,公比為q,試就q的不同取值情況,討論二元一次方程組$\left\{\begin{array}{l}{a_1}x+{a_3}y=3\\{a_2}x+{a_4}y=-2\end{array}\right.$何時無解,何時有無窮多解?

分析 先消元,再根據(jù)等比數(shù)列的性質(zhì)得到,0•x=3a4+2a3,問題得以解決.

解答 解:解方程組$\left\{\begin{array}{l}{a_1}x+{a_3}y=3\\{a_2}x+{a_4}y=-2\end{array}\right.$,消y得到(a1a4-a2a3)x=3a4+2a3
∵等比數(shù)列{an}的公比為q,
∴a1a4-a2a3=0,
當3a4+2a3=0時,即q=-$\frac{2}{3}$時,方程組有無窮多解,
故選:C.

點評 本題以方程組的解為載體,考查等比數(shù)列的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在棱長為2的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為A1B1,CD的中點.
(1)求直線EC與平面B1BCC1所成角的大小的正弦值;
(2)求二面角E-AF-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知兩個定點A(-2,0),B(1,0),動點P滿足|PA|=2|PB|.設(shè)動點P的軌跡為曲線C,過點(0,-3)的直線l與曲線C交于不同的兩點D(x1,y1),E(x2,y2).
(Ⅰ)求曲線C的軌跡方程;
(Ⅱ)求直線l斜率的取值范圍;
(Ⅲ)若x1x2+y1y2=3,求|DE|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知橢圓方程為$\frac{x^2}{9}+\frac{y^2}{4}=1$的左、右焦點分別為F1,F(xiàn)2,過左焦點F1的直線交橢圓于A,B兩點,則△ABF2的周長為( 。
A.12B.9C.6D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.四棱錐P-ABCD中,底面ABCD是矩形,∠PCD=90°,二面角P-CD-B為60°,BC=1,AB=PC=2.
(1)求證:平面PAB⊥平面ABCD;
(2)求點C到平面PAD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知復(fù)數(shù)z滿足|z|-2z=-1+8i,求z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,測量河對岸的塔高AB時,可以選與塔底B在同一水平面內(nèi)的兩個測點C與∠BCD=75°,∠BDC=60°,CD=20mD.現(xiàn)測得,并在點C測得塔頂A的仰角為30°,求塔高AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某次文藝晚會上共演出8個節(jié)目,其中2個唱歌、3個舞蹈、3個曲藝節(jié)目,求分別滿足下列條件的排節(jié)目單的方法種數(shù):
(1)一個唱歌節(jié)目開頭,另一個壓臺;
(2)兩個唱歌節(jié)目不相鄰;
(3)兩個唱歌節(jié)目相鄰且3個舞蹈節(jié)目不相鄰.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)的定義域為[-1,5],部分對應(yīng)值如表:
x-10245
f(x)12021
f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,則f(x)的極小值為0.

查看答案和解析>>

同步練習(xí)冊答案