17.在極坐標(biāo)系中,極點(diǎn)為O,點(diǎn)A的極坐標(biāo)為(2,$\frac{π}{6}$),以O(shè)A為斜邊作等腰直角三角形OAB(其中O,A,B按逆時(shí)針?lè)较蚍植迹?br />(1)求點(diǎn)B的極坐標(biāo);
(2)求三角形外接圓的極坐標(biāo)方程.

分析 (1)利用極坐標(biāo)與直角坐標(biāo)的互化方法,求點(diǎn)B的極坐標(biāo);
(2)設(shè)三角形外接圓的極坐標(biāo)方程ρ=2sin(θ+γ),γ∈[0,2π).求出γ,即可求三角形外接圓的極坐標(biāo)方程.

解答 解:(1)設(shè)B(ρ,θ),則ρ=$\frac{2}{\sqrt{2}}$=$\sqrt{2}$,θ=$\frac{π}{6}+\frac{π}{4}$=$\frac{5π}{12}$,
∴B($\sqrt{2}$,$\frac{5π}{12}$);
(2)由題意,設(shè)三角形外接圓的極坐標(biāo)方程ρ=2sin(θ+γ),γ∈[0,2π).
∵$θ=\frac{π}{6}$,ρ=2sin($\frac{π}{6}$+γ),γ∈[0,2π),
∴γ=$\frac{π}{3}$,
∴三角形外接圓的極坐標(biāo)方程ρ=2sin(θ+$\frac{π}{3}$).

點(diǎn)評(píng) 本題考查極坐標(biāo)與直角坐標(biāo)的互化,考查極坐標(biāo)方程,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)y=f(x)定義在R上的奇函數(shù),且當(dāng)x≥0時(shí),f(x)=x2-3x+b,則f(-2)=( 。
A.-2B.2C.10D.-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.函數(shù)y=log2|1-x|的圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知關(guān)于x的不等式x2-ax-2>0的解集為{x|x<-1或x>b}(b>-1).
(1)求a,b的值;
(2)當(dāng)m>-$\frac{1}{2}$時(shí),解關(guān)于x的不等式(mx+a)(x-b)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知二次函數(shù)f(x)=x2-2ax+5(a>1).
(Ⅰ)若f(x)的定義域和值域均是[1,a],求實(shí)數(shù)a的值;
(Ⅱ)若f(x)在區(qū)間(-∞,2]上是減函數(shù),求f(x)在區(qū)間[1,a+1]上的最小值和最大值;
(Ⅲ) 若f(x)在區(qū)間(1,3)上有零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.贛榆區(qū)自行車主題景觀大道引進(jìn)50輛自行車供游客租賃使用,管理這些自行車的費(fèi)用是每日125元.根據(jù)經(jīng)驗(yàn),若每輛自行車的日租金不超過(guò)6元,則自行車可以全部租出;若超過(guò)6元,則每提高1元,租不出去的自行車就增加3輛.
規(guī)定:每輛自行車的日租金不超過(guò)20元,每輛自行車的日租金2x元只取整數(shù),并要求出租所有自行車一日的總收入必須超過(guò)一日的管理費(fèi)用,用y表示出租所有自行車的日凈收入(即一日中出租所有自行車的總收入減去管理費(fèi)后的所得).
(1)求函數(shù)f(x)的解析式及定義域;
(2)試問(wèn)日凈收入最多時(shí)每輛自行車的日租金應(yīng)定為多少元?日凈收入最多為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若a<b<0,則下列不等式中不成立的是②(只填序號(hào))
①$\frac{1}{a}$>$\frac{1}$
②$\frac{1}{a-b}$>$\frac{1}{a}$
③|a|>|b|
④a2>b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知雙曲線的一個(gè)焦點(diǎn)為(4,0),離心率為e=2.
(1)求雙曲線的標(biāo)準(zhǔn)方程;
(2)寫(xiě)出該雙曲線的漸進(jìn)線方程,并求它的焦點(diǎn)(4,0)到另一條漸進(jìn)線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足條件b2+c2-a2=bc=1,cosBcosC=-$\frac{1}{8}$,則△ABC的周長(zhǎng)為$\sqrt{2}$+$\sqrt{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案