(2013•安徽)設(shè)sn為等差數(shù)列{an}的前n項(xiàng)和,s8=4a3,a7=-2,則a9=(  )
分析:由題意可得
8a1+
8×7
2
d=4(a1+2d)
a1+6d=-2
,解此方程組,求得首項(xiàng)和公差d的值,即可求得a9的值.
解答:解:∵sn為等差數(shù)列{an}的前n項(xiàng)和,s8=4a3,a7=-2,即
8a1+
8×7
2
d=4(a1+2d)
a1+6d=-2

解得 a1=10,且d=-2,∴a9=a1+8d=-6,
故選A.
點(diǎn)評(píng):本題主要考查等差數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•安徽)設(shè)△ABC的內(nèi)角A,B,C所對(duì)邊的長(zhǎng)分別為a,b,c,若b+c=2a,3sinA=5sinB,則角C=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•安徽)設(shè)i是虛數(shù)單位,若復(fù)數(shù)a-
10
3-i
(a∈R)是純虛數(shù),則a的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•安徽)設(shè)函數(shù)f(x)=sinx+sin(x+
π3
).
(Ⅰ)求f(x)的最小值,并求使f(x)取得最小值的x的集合;
(Ⅱ)不畫圖,說明函數(shù)y=f(x)的圖象可由y=sinx的圖象經(jīng)過怎樣的變化得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•安徽)設(shè)數(shù)列{an}滿足a1=2,a2+a4=8,且對(duì)任意n∈N*,函數(shù) f(x)=(an-an+1+an+2)x+an+1cosx-an+2sinx滿足f′(
π
2
)=0
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=2(an+
1
2an
)求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案