已知Rt△ABC的斜邊AB=2,內(nèi)切圓半徑為r,求r的最大值.
解:設(shè)切點(diǎn)分斜邊為x,y兩部分,
則(r+y)2+(r+x)2=(x+y)2,x+y=2,

,
∵xy≤1,
。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖:已知BB1,CC1是Rt△ABC所在平面同側(cè)的兩條相等的斜線段,它們與平面ABC所成的角均為60°,且BB1∥CC1,線段BB1的端點(diǎn)B1在平面ABC的射影M恰是BC的中點(diǎn),已知BC=2,∠ACB=90°
①求異面直線AB1與BC1所成的角.
②若二面角A-BB1-C的大小為30°,求三棱錐C1-ABC的體積.
③在②的條件下,求直線AB1與平面BCC1B1所成角正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖:已知BB1,CC1是Rt△ABC所在平面同側(cè)的兩條相等的斜線段,它們與平面ABC所成的角均為60°,且BB1∥CC1,線段BB1的端點(diǎn)B1在平面ABC的射影M恰是BC的中點(diǎn),已知BC=2,∠ACB=90°
①求異面直線AB1與BC1所成的角.
②若二面角A-BB1-C的大小為30°,求三棱錐C1-ABC的體積.
③在②的條件下,求直線AB1與平面BCC1B1所成角正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考數(shù)學(xué)模擬組合試卷(2)(解析版) 題型:解答題

如圖:已知BB1,CC1是Rt△ABC所在平面同側(cè)的兩條相等的斜線段,它們與平面ABC所成的角均為60°,且BB1∥CC1,線段BB1的端點(diǎn)B1在平面ABC的射影M恰是BC的中點(diǎn),已知BC=2,∠ACB=90°
①求異面直線AB1與BC1所成的角.
②若二面角A-BB1-C的大小為30°,求三棱錐C1-ABC的體積.
③在②的條件下,求直線AB1與平面BCC1B1所成角正切值.

查看答案和解析>>

同步練習(xí)冊答案