已知ABCD是矩形,PA⊥平面ABCD,AB=2,PA=AD=4,E為BC的中點.
(1)求證:DE⊥平面PAE;
(2)求直線DP與平面PAE所成的角.
(1)證明:在△ADE中,,∴AE⊥DE,
∵PA⊥平面ABCD,平面ABCD,
∴PA⊥DE,
又PA∩AE=A,
∴DE⊥平面PAE。
(2)解:∠DPE為DP與平面PAE所成的角,
在Rt△PAD中,,
在Rt△DCE中,
在Rt△DEP中,PD=2DE,
。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

18、如圖,已知ABCD是矩形,E是以CD為直徑的半圓周上一點,且平面CDE⊥平面ABCD,求證:CE⊥平面ADE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知ABCD是矩形,AD=2AB,E,F(xiàn)分別是線段AB,BC的中點,PA⊥平面ABCD.
(Ⅰ)求證:DF⊥平面PAF;
(Ⅱ)在棱PA上找一點G,使EG∥平面PED,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

 如圖,已知ABCD是矩形,PA⊥平面ABCD,M,N分別是AB,PC的中點,PA=2,PD=AB,且平面MND⊥平面PCD.
(1)求證:MN⊥AB;
(2)求二面角P-CD-A的大;
(3)求三棱錐D-AMN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知ABCD是矩形,M、N分別是PC、PD上的點,MN⊥PC,且PA⊥平面ABCD,AN⊥PD,求證:AM⊥PC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•內(nèi)江二模)已知ABCD是矩形,AD=4,AB=2,E、F分別是AB、BC 的中點,PA丄面ABCD.
(1)求證:PF丄DF;
(2)若PD與面ABCD所成角為300在PA上找一點 G,使EG∥面PFD,并求出AG的長.

查看答案和解析>>

同步練習(xí)冊答案