已知函數(shù)f(x)定義在區(qū)間(-1,1)上,f(
1
2
)=-1,且當(dāng)x,y∈(-1,1)時,恒有f(x)-f(y)=f(
x-y
1-xy
).又?jǐn)?shù)列{an}滿足,a1=
1
2
,an+1=
2an
1+an2

(I )證明:f(x)在(-1,1)上是奇函數(shù)
( II )求f(an)的表達(dá)式;
(III)設(shè)bn=
1
2log2|f(an+1)
,Tn為數(shù)列{bn}的前n項和,若T2n+1-Tn
m
15
(其中m∈N*)對N∈N*恒成立,求m的最小值.
(Ⅰ)證明:令x=y=0時,則由已知有f(0)-f(0)=f(
0-0
1-0×0
),
可解得f (0)=0.
再令x=0,y∈(-1,1),則有f(0)-f(y)=f(
0-y
1-0•y
),即f (-y)=-f (y),
∴f (x)是(-1,1)上的奇函數(shù).…(4分)
(Ⅱ)令x=an,y=-an,于是f(an)-f(-an)=f(
2an
1+
a2n
),
由已知得2f (an)=f (an+1),
f(an+1)
f(an)
=2
,
∴數(shù)列{f(an)}是以f(a1)=f(
1
2
)=-1為首項,2為公比的等比數(shù)列.
∴f(an)═1×2n-1=-2n-1…(8分)
(III)由(II)得f(an+1)=-2n,于bn=
1
2n

∴Tn=b1+b2+b3+…+bn
=
1
2
(1+
1
2
+
1
3
+…
1
n
),
T2n+1=
1
2
(1+
1
2
+
1
3
+…
1
2n+1
),
∴T2n+1-Tn=
1
2
1
n+1
+
1
n+2
+…+
1
2n+1
).
令k(n)=
1
2
1
n+1
+
1
n+2
+…+
1
2n+1
).
于是k(n+1)=
1
2
1
n+2
+
1
n+3
+…+
1
2n+3
).
∴k(n+1)-k(n)=
1
2
1
2n+2
+
1
2n+3
-
1
n+1
)=-
1
4(n+1)(2n+3)
<0.
∴k(n+1)<k(n),即k(n)在N*上單調(diào)遞減,
∴k(n)max=k(1)=T3-T1=
5
12

m
15
5
12
即m≥
25
4

∵m∈N*,
∴m的最小值為7.…(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)定義在(-1,1)上,對于任意的x,y∈(-1,1),有f(x)+f(y)=f(
x+y
1+xy
)
,且當(dāng)x<0時,f(x)>0.
(Ⅰ)驗證函數(shù)f(x)=ln
1-x
1+x
是否滿足這些條件;
(Ⅱ)判斷這樣的函數(shù)是否具有奇偶性和其單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)定義在R上,并且對于任意實數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且x≠y時,f(x)≠f(y),x>0時,有f(x)>0.
(1)判斷f(x)的奇偶性;
(2)若f(1)=1,解關(guān)于x的不等式f(x)-f(
1x-1
)≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•連云港二模)已知函數(shù)f(x)定義在正整數(shù)集上,且對于任意的正整數(shù)x,都有f(x+2)=2f(x+1)-f(x),且f(1)=2,f(3)=6,則f(2009)=
4018
4018

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)定義在區(qū)間(-1,1)上,f(
1
2
)=-1,且當(dāng)x,y∈(-1,1)時,恒有f(x)-f(y)=f(
x-y
1-xy
),又?jǐn)?shù)列{an}滿足:a1=
1
2
,an+1=
2an
1+
a
2
n

(I)證明:f(x)在(-1,1)上為奇函數(shù);
(II)求f(an)關(guān)于n的函數(shù)解析式;
(III)令g(n)=f(an)且數(shù)列{an}滿足bn=
1
g(n)
,若對于任意n∈N+,都有b1+b2+…+bnt2-3t恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)定義在R上,對任意的x∈R,f(x+1001)=
2
f(x)
+1
,已知f(11)=1,則f(2013)=
 

查看答案和解析>>

同步練習(xí)冊答案