如圖,在正四面體ABCD中.各面都是全等的正三角形的四面體,M為AD的中點(diǎn),求CM與平面BCD所成角的余弦值.

答案:
解析:

  解:作AO⊥平面BCD于O,連DO,作MN⊥平面BCD于N,則N∈OD.

  設(shè)AD=a,則OD=,∴AO=,∴MN=

  又∵CM=,∴CN=

  ∴CM與平面BCD所成角的余弦值為


提示:

要作出CM在平面BCD內(nèi)的射影,關(guān)鍵是作出M在平面BCD內(nèi)的射影,而M為AD的中點(diǎn),故只需觀察A在平面BCD內(nèi)的射影,至此問(wèn)題解法已明朗.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正四面體ABCD中,E為AB的中點(diǎn),F(xiàn)為CD的中點(diǎn),則異面直線EF與AC所成的角為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江蘇省蘇州市高三摸底考試數(shù)學(xué)卷 題型:選擇題

如圖,在正四面體S—ABC中,ESA的中點(diǎn),F為DABC

中心,則異面直線EFAB所成的角是

A.30°               B.45°              

C.60°               D.90°

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年?yáng)|北師大附中四摸) 如圖,在正四面體S―ABC中,ESA的中點(diǎn),F為DABC的中心,則異面直線EFAB所成的角是                     

A.30°               B.45°              

C.60°               D.90°

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在正四面體ABCD中,E為AB的中點(diǎn),F(xiàn)為CD的中點(diǎn),則異面直線EF與AC所成的角為(  )
A.90°B.60°C.45°D.30°
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正四面體P-ABC中,D、E、F分別是AB、BC、CA的中點(diǎn),下面四個(gè)結(jié)論不成立的是(  )

(A)BC∥平面PDF

(B)DF⊥平面PAE

(C)平面PDF⊥平面PAE

(D)平面PDE⊥平面ABC

查看答案和解析>>

同步練習(xí)冊(cè)答案