5.已知函數(shù)f(x)=$\left\{\begin{array}{l}0,x>0\\-π,x=0\\{π^2}+1,x<0\end{array}$則f(f(f(-1)))的值等于( 。
A.π2-1B.π2+1C.D.0

分析 由已知得f(-1)=π2+1,f(f(-1))=f(π2+1)=0,從而f(f(f(-1)))=f(0),由此能求出結(jié)果.

解答 解:∵f(x)=$\left\{\begin{array}{l}0,x>0\\-π,x=0\\{π^2}+1,x<0\end{array}$,
∴f(-1)=π2+1,
f(f(-1))=f(π2+1)=0,
f(f(f(-1)))=f(0)=-π.
故選:C.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.?dāng)?shù)列{an}滿足a1=1且an+1-an=n+1(n∈N*),則數(shù)列{$\frac{1}{{a}_{n}}$}的前20項和為(  )
A.$\frac{40}{21}$B.$\frac{41}{20}$C.2D.$\frac{43}{20}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知命題p:?x0∈R,x02+4x0+6<0,則¬p為( 。
A.?x∈R,x02+4x0+6≥0B.?x0∈R,x02+4x0+6>0
C.?x∈R,x02+4x0+6>0D.?x0∈R,x02+4x0+6≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ為參數(shù)),若P是圓C與y軸正半軸的交點,以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,求過點P的圓C的切線的極坐標(biāo)方程$ρcos(θ-\frac{5π}{6})$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.等比數(shù)列{an}的前n項和為Sn,且a1=$\frac{1}{2}$,若$\frac{{{S_{10}}}}{S_5}$=$\frac{31}{32}$,則a6=( 。
A.$\frac{1}{64}$B.-$\frac{1}{64}$C.$\frac{1}{32}$D.-$\frac{1}{32}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)(x,y)在映射f下的像是(2x+y,x-2y),則在f下,像(3,4)的原像是( 。
A.(10,-5)B.(2,-1)C.(1,0)D.(3,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)y=f(x)滿足f(x)=2f($\frac{1}{x}$)+3x,則f(x)的解析式為f(x)=-x-$\frac{2}{x}$,(x≠0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若函數(shù)f(x)=ax2-lnx在[1,+∞)上是減函數(shù),求實數(shù)a的取值范圍是a≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.雙曲線與橢圓4x2+y2=1有相的焦點,它的一條漸近線方程是y=$\sqrt{2}$x,則這雙曲線的方程是4y2-2x2=1.

查看答案和解析>>

同步練習(xí)冊答案