【題目】“城市呼喚綠化”,發(fā)展園林綠化事業(yè)是促進(jìn)國(guó)家經(jīng)濟(jì)法陣和城市建設(shè)事業(yè)的重要組成部分,某城市響應(yīng)城市綠化的號(hào)召,計(jì)劃建一如圖所示的三角形ABC形狀的主題公園,其中一邊利用現(xiàn)成的圍墻BC,長(zhǎng)度為100 米,另外兩邊AB,AC使用某種新型材料圍成,已知∠BAC=120°,AB=x,AC=y(x,y單位均為米).

(1)求x,y滿足的關(guān)系式(指出x,y的取值范圍);
(2)在保證圍成的是三角形公園的情況下,如何設(shè)計(jì)能使所用的新型材料總長(zhǎng)度最短?最短長(zhǎng)度是多少?

【答案】
(1)解:在△ABC中,由余弦定理,得AB2+AC2﹣2ABACcosA=BC2,

所以x2+y2﹣2xycos120°=30000,

即x2+y2+xy=30000,

又因?yàn)閤>0,y>0,所以


(2)解:要使所用的新型材料總長(zhǎng)度最短只需x+y的最小,

由(1)知,x2+y2+xy=30000,所以(x+y)2﹣30000=xy,

因?yàn)? ,所以 ,

則(x+y)2≤40000,即x+y≤200,

當(dāng)且僅當(dāng)x=y=100時(shí),上式不等式成立.

故當(dāng)AB,AC邊長(zhǎng)均為100米時(shí),所用材料長(zhǎng)度最短為200米


【解析】(1)根據(jù)題意,由余弦定理可得x2+y2﹣2xycos120°=30000,變形可得x2+y2+xy=30000,分析x、y的取值范圍即可得答案;(2)由(1)可得x2+y2+xy=30000,對(duì)其變形可得(x+y)2﹣30000=xy,結(jié)合基本不等式可得 ,解可得x+y≤200,分析可得答案.
【考點(diǎn)精析】本題主要考查了基本不等式在最值問(wèn)題中的應(yīng)用和余弦定理的定義的相關(guān)知識(shí)點(diǎn),需要掌握用基本不等式求最值時(shí)(積定和最小,和定積最大),要注意滿足三個(gè)條件“一正、二定、三相等”;余弦定理:;;才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =(an , 2n), =(2n+1 , ﹣an+1),n∈N* , 向量 垂直,且a1=1
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=log2an+1,求數(shù)列{anbn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

(1)當(dāng)時(shí),求函數(shù) 的極小值;

(2)若函數(shù)上為增函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校有教職工500人,對(duì)他們進(jìn)行年齡狀況和受教育程度的調(diào)查,其結(jié)果如下:

高中

專(zhuān)科

本科

研究生

合計(jì)

35歲以下

10

150

50

35

245

35﹣50

20

100

20

13

153

50歲以上

30

60

10

2

102

隨機(jī)的抽取一人,求下列事件的概率:
(1)50歲以上具有專(zhuān)科或?qū)?埔陨蠈W(xué)歷;
(2)具有本科學(xué)歷;
(3)不具有研究生學(xué)歷.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等比數(shù)列{an}中,公比q≠1,等差數(shù)列{bn}滿足a1=b1=3,a2=b4 , a3=b13
(1)求數(shù)列{an}的{bn}通項(xiàng)公式;
(2)記cn=anbn , 求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一個(gè)四位數(shù)的各位數(shù)字相加和為,則稱(chēng)該數(shù)為“完美四位數(shù)”,如數(shù)字“”.試問(wèn)用數(shù)字組成的無(wú)重復(fù)數(shù)字且大于的“完美四位數(shù)”有( )個(gè)

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)y=sin(2x+ )cos(x﹣ )+cos(2x+ )sin( ﹣x)的圖象的一條對(duì)稱(chēng)軸方程是(
A.x=
B.x=
C.x=π
D.x=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知數(shù)列{an}的前n項(xiàng)和Sn= ,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=2an+(﹣1)nan , 求數(shù)列{bn}的前2n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=2x2﹣3x+1,g(x)=ksin(x﹣ )(k≠0).
(1)設(shè)f(x)的定義域?yàn)閇0,3],值域?yàn)锳; g(x)的定義域?yàn)閇0,3],值域?yàn)锽,且AB,求實(shí)數(shù)k的取值范圍.
(2)若方程f(sinx)+sinx﹣a=0在[0,2π)上恰有兩個(gè)解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案