【題目】一種拋硬幣游戲的規(guī)則是:拋擲一枚硬幣,每次正面向上得1分,反面向上得2分.

(1)設(shè)拋擲5次的得分為,求的分布列和數(shù)學(xué)期望;

(2)求恰好得到分的概率.

【答案】1)見解析;(2

【解析】

1)拋擲5次的得分可能為,且正面向上和反面向上的概率相等,都為,所以得分的概率為,即可得分布列和數(shù)學(xué)期望;

2)令表示恰好得到分的概率,不出現(xiàn)分的唯一情況是得到分以后再擲出一次反面.,因?yàn)?/span>不出現(xiàn)的概率是,恰好得到的概率是,因?yàn)?/span>擲一次出現(xiàn)反面的概率是,所以有,即,所以是以為首項(xiàng),以為公比的等比數(shù)列,即求得恰好得到分的概率.

1)所拋5次得分的概率為,

其分布列如下

2)令表示恰好得到分的概率,不出現(xiàn)分的唯一情況是得到分以后再擲出一次反面.

因?yàn)?/span>不出現(xiàn)的概率是,恰好得到的概率是,

因?yàn)?/span>擲一次出現(xiàn)反面的概率是,所以有,

于是是以為首項(xiàng),以為公比的等比數(shù)列.

所以,即

恰好得到分的概率是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系xOy中,設(shè)傾斜角為α的直線lt為參數(shù))與曲線Cθ為參數(shù))相交于不同的兩點(diǎn)A,B

)若α,求線段AB中點(diǎn)M的坐標(biāo);

)若|PA·PB|=|OP,其中P2,),求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為t為參數(shù)),若以O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρcosθsinθ

1)求直線l被曲線C所截得的弦長(zhǎng);

2)若Mx,y)是曲線C上的動(dòng)點(diǎn),求x+y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓a0,b0)的左右焦點(diǎn)分別為F1,F2,與y軸正半軸交于點(diǎn)B,若BF1F2為等腰直角三角形,且直線BF1被圓x2+y2b2所截得的弦長(zhǎng)為2,

1)求橢圓的方程;

2)直線lykx+m與橢圓交于點(diǎn)A,C,線段AC的中點(diǎn)為M,射線MO與橢圓交于點(diǎn)P,點(diǎn)OPAC的重心,求證:PAC的面積S為定值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在平面五邊形中,已知四邊形為正方形,為正三角形.沿著將四邊形折起得到四棱錐,使得平面平面,設(shè)在線段上且滿足,在線段上且滿足,的重心,如圖(2.

1)求證:平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) fx)=a|sinx|+|cosx|)﹣sin2x1,aR

1)寫出函數(shù) fx)的最小正周期(不必寫出過程);

2)求函數(shù) fx)的最大值;

3)當(dāng)a1時(shí),若函數(shù) fx)在區(qū)間(0kπ)(kN*)上恰有2015個(gè)零點(diǎn),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市的公交公司為了方便市民出行,科學(xué)規(guī)劃車輛投放,在一個(gè)人員密集流動(dòng)地段增設(shè)一個(gè)起點(diǎn)站,為了研究車輛發(fā)車間隔時(shí)間與乘客等候人數(shù)之間的關(guān)系,經(jīng)過調(diào)查得到如下數(shù)據(jù):

間隔時(shí)間/

10

11

12

13

14

15

等候人數(shù)y/

23

25

26

29

28

31

調(diào)查小組先從這組數(shù)據(jù)中選取組數(shù)據(jù)求線性回歸方程,再用剩下的組數(shù)據(jù)進(jìn)行檢驗(yàn).檢驗(yàn)方法如下:先用求得的線性回歸方程計(jì)算間隔時(shí)間對(duì)應(yīng)的等候人數(shù),再求與實(shí)際等候人數(shù)的差,若差值的絕對(duì)值都不超過,則稱所求方程是“恰當(dāng)回歸方程”.

(1)從這組數(shù)據(jù)中隨機(jī)選取組數(shù)據(jù)后,求剩下的組數(shù)據(jù)的間隔時(shí)間不相鄰的概率;

(2)若選取的是后面組數(shù)據(jù),求關(guān)于的線性回歸方程,并判斷此方程是否是“恰當(dāng)回歸方程”;

(3)為了使等候的乘客不超過人,試用(2)中方程估計(jì)間隔時(shí)間最多可以設(shè)置為多少(精確到整數(shù))分鐘.

附:對(duì)于一組數(shù)據(jù),,……,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.

1)求曲線的直角坐標(biāo)方程和直線的普通方程;

2)設(shè)點(diǎn),為曲線上的動(dòng)點(diǎn),求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)五位自然數(shù)數(shù)稱為跳躍數(shù),如果同時(shí)有(例如13284,40329都是跳躍數(shù),而12345,5437194333都不是跳躍數(shù)),則由1,2,34,5組成沒有重復(fù)數(shù)字且1,4不相鄰的跳躍數(shù)共有_____個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案