已知定義在R上的偶函數(shù)y=f(x)滿足:f(x+4)=f(x)+f(2),且當x∈[0,2]時,y=f(x)單調遞減,給出以下四個命題:
①f(2)=0;      
②x=-4為函數(shù)y=f(x)圖象的一條對稱軸;
③函數(shù)y=f(x)在[8,10]單調遞增;
④若關于x的方程f(x)=m在[一6,一2]上的兩根為x1,x2,則x1+x2=-8.
以上命題中所有正確的命題為


  1. A.
    ①②④
  2. B.
    ①③④
  3. C.
    ②④
  4. D.
    ③④
A
分析:根據(jù)f(x)是定義在R上的偶函數(shù),及在f(x+4)=f(x)+f(2),中令x=-2可得f(-2)=f(2)=0,從而有f(x+4)=f(x),故得函數(shù)f(x)是周期為4的周期函數(shù),再結合y=f(x)單調遞減、奇偶性畫出函數(shù)f(x)的簡圖,最后利用從圖中可以得出正確的結論.
解答:解:∵f(x)是定義在R上的偶函數(shù),
∴f(-x)=f(x),
可得f(-2)=f(2),
在f(x+4)=f(x)+f(2),中令x=-2得
f(2)=f(-2)+f(2),
∴f(-2)=f(2)=0,
∴f(x+4)=f(x),
∴函數(shù)f(x)是周期為4的周期函數(shù),
又當x∈[0,2]時,y=f(x)單調遞減,結合函數(shù)的奇偶性畫出函數(shù)f(x)的簡圖,如圖所示.
從圖中可以得出:
②x=-4為函數(shù)y=f(x)圖象的一條對稱軸;
③函數(shù)y=f(x)在[8,10]單調遞減;
④若方程f(x)=m在[-6,-2]上的兩根為x1,x2,則x1+x2=-8.
故①②④正確;
故選A;
點評:本題考查函數(shù)奇偶性的性質,函數(shù)奇偶性的判斷,考查學生的綜合分析與轉化能力,屬于難題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在R上的不恒為零的函數(shù),且對于任意實數(shù)a,b都有f(a•b)=af(b)+bf(a),則(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知f(x)是定義在R上的不恒為零的函數(shù),且對于任意實數(shù)a,b都有f(a•b)=af(b)+bf(a),則


  1. A.
    f(x)是奇函數(shù),但不是偶函數(shù)
  2. B.
    f(x)是偶函數(shù),但不是奇函數(shù)
  3. C.
    f(x)既是奇函數(shù),又是偶函數(shù)
  4. D.
    f(x)既非奇函數(shù),又非偶函

查看答案和解析>>

同步練習冊答案