精英家教網 > 高中數學 > 題目詳情

如圖所示,在以AB為直徑的半圓周上,有異于A、B的六個點、、、,直徑AB上有異于AB的四個點、、

問:(1)以這10個點中的3個點為頂點作三角形可作多少個?其中含點的有多少個?

(2)以圖中的12個點(包括AB)中的4個為頂點,可作出多少個四邊形?

答案:略
解析:

解析:(1)可分三種情況處理:

、、…、這六個點中任取三點可構成一個三角形.

、、…、中任取一點,、、中任取兩點可構成一個三角形.

、、…、中任取兩點,、中任取一點可構成一個三角形.

個.

其中以為頂點的三角形有

個;

(2)構成一個四邊形,需要四個點,且無三點共線.

個.


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網通常用a、b、c表示△ABC的三個內角∠A、∠B、∠C所對邊的邊長,R表示△ABC外接圓半徑.
(1)如圖所示,在以O為圓心,半徑為2的⊙O中,BC和BA是⊙O的弦,其中BC=2,∠ABC=45°,求弦AB的長;
(2)在△ABC中,若∠C是鈍角,求證:a2+b2<4R2;
(3)給定三個正實數a、b、R,其中b≤a,問:a、b、R滿足怎樣的關系時,以a、b為邊長,R為外接圓半徑的△ABC不存在,存在一個或兩個(全等的三角形算作同一個)?在△ABC存在的情況下,用a、b、R表示c.

查看答案和解析>>

科目:高中數學 來源: 題型:044

(2007上海春,20)通常用a、bc分別表示△ABC的三個內角A、BC所對邊的邊長,R表示△ABC的外接圓半徑.

(1)如圖所示,在以O為圓心、半徑為2的⊙O中,BCBA是圓的弦,其中BC=2,∠ABC=45°,求弦AB的長;

(2)在△ABC中,若∠C是鈍角,求證:;

(3)給定三個正實數a、b、R,其中ba.問:ab、R滿足怎樣的關系時,以a、b為邊長,R為外接圓半徑的△ABC不存在、存在一個或存在兩個(全等的三角形算作同一個)?在△ABC存在的情況下,用ab、R表示c

查看答案和解析>>

科目:高中數學 來源:2009-2010學年湖北省武漢二中高一(上)期末數學試卷(解析版) 題型:解答題

通常用a、b、c表示△ABC的三個內角∠A、∠B、∠C所對邊的邊長,R表示△ABC外接圓半徑.
(1)如圖所示,在以O為圓心,半徑為2的⊙O中,BC和BA是⊙O的弦,其中BC=2,∠ABC=45°,求弦AB的長;
(2)在△ABC中,若∠C是鈍角,求證:a2+b2<4R2;
(3)給定三個正實數a、b、R,其中b≤a,問:a、b、R滿足怎樣的關系時,以a、b為邊長,R為外接圓半徑的△ABC不存在,存在一個或兩個(全等的三角形算作同一個)?在△ABC存在的情況下,用a、b、R表示c.

查看答案和解析>>

科目:高中數學 來源:2007年上海市春季高考數學試卷(解析版) 題型:解答題

通常用a、b、c表示△ABC的三個內角∠A、∠B、∠C所對邊的邊長,R表示△ABC外接圓半徑.
(1)如圖所示,在以O為圓心,半徑為2的⊙O中,BC和BA是⊙O的弦,其中BC=2,∠ABC=45°,求弦AB的長;
(2)在△ABC中,若∠C是鈍角,求證:a2+b2<4R2;
(3)給定三個正實數a、b、R,其中b≤a,問:a、b、R滿足怎樣的關系時,以a、b為邊長,R為外接圓半徑的△ABC不存在,存在一個或兩個(全等的三角形算作同一個)?在△ABC存在的情況下,用a、b、R表示c.

查看答案和解析>>

同步練習冊答案