精英家教網 > 高中數學 > 題目詳情

【題目】現擬建一個糧倉,如圖1所示,糧倉的軸截而如圖2所示,EDEC,ADBCBCAB,EFABCDEF于點G,EFFC10m

1)設∠CFBθ,求糧倉的體積關于θ的函數關系式;

2)當sinθ為何值時,糧倉的體積最大?

【答案】(1)(2)時,糧倉的體積最大.

【解析】

(1)根據已知條件分別求出,再代入體積公式即可.

(2)令,將(1)問的關系式轉化為三次函數,求導即可得到最大值時的正弦值.

(1)因為,且,所以四邊形是平行四邊形.

又因為,所以四邊形是矩形,

,所以,

所以是三角形的中線.

因為,所以,,,

所以

化簡得,.

(2)令,

則糧倉的體積,

,即,解得(舍去),

時, 0,y上單調遞增;

時,,y上單調遞減,

所以當時,即時,糧倉的體積最大.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)討論的單調性;

(2)若有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在多面體中,平面平面.四邊形為正方形,四邊形為梯形,且,,

(1)求證:;

(2)求直線與平面所成角的正弦值;

(3)線段上是否存在點,使得直線平面若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】現要完成下列3項抽樣調查:①從20罐奶粉中抽取4罐進行食品安全衛(wèi)生檢查;②從某社區(qū)100戶高收入家庭,270戶中等收入家庭,80戶低收入家庭中選出45戶進行消費水平調查;③某中學報告廳有28排,每排有35個座位,一次報告會恰好坐滿了聽眾,報告會結束后,為了聽取意見,需要請28名聽眾進行座談.較為合理的抽樣方法是(

A.①系統(tǒng)抽樣;②簡單隨機抽樣;③分層抽樣

B.①簡單隨機抽樣;②分層抽樣;③系統(tǒng)抽樣

C.①分層抽樣;②系統(tǒng)抽樣;③簡單隨機抽樣

D.①簡單隨機抽樣;②系統(tǒng)抽樣;③分層抽樣

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線x2=4y

(1)求拋物線在點P(2,1)處的切線方程;

(2)若不過原點的直線l與拋物線交于A,B兩點(如圖所示),且OAOB,|OA|=|OB|,求直線l的斜率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在正方體中,點是底面的中心,是線段的上一點。

(1)若的中點,求直線與平面所成角的正弦值;

(2)能否存在點使得平面平面,若能,請指出點的位置關系,并加以證明;若不能,請說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知點在圓柱的底面圓上,為圓的直徑.

(1)若圓柱的體積,,,求異面直線所成的角(用反三角函數值表示結果);

(2)若圓柱的軸截面是邊長為2的正方形,四面體的外接球為球,求兩點在球上的球面距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知奇函數是定義在R上的單調函數,若函數恰有個零點,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】橢圓)的離心率是,點在短軸上,且

(1)球橢圓的方程;

(2)設為坐標原點,過點的動直線與橢圓交于兩點。是否存在常數,使得為定值?若存在,求的值;若不存在,請說明理由。

查看答案和解析>>

同步練習冊答案