【題目】已知函數(shù)的最小正周期為,其圖象關于直線對稱.給出下面四個結論:①將的圖象向右平移個單位長度后得到函數(shù)圖象關于原點對稱;②點圖象的一個對稱中心;③;④在區(qū)間上單調遞增.其中正確的結論為(

A.①②B.②③C.②④D.①④

【答案】C

【解析】

先由函數(shù)周期性與對稱軸,求出函數(shù)解析式為,根據(jù)三角函數(shù)的平移原則,正弦函數(shù)的對稱性與單調性,逐項判斷,即可得出結果.

因為函數(shù)的最小正周期為,其圖象關于直線對稱,

所以,解得,

因為,所以,因此;

①將的圖象向右平移個單位長度后函數(shù)解析式為,

,所以其對稱中心為:,故①錯;

②由,解得,即函數(shù)的對稱中心為;令,則,故②正確;

,故③錯;

④由

即函數(shù)的增區(qū)間為,因此在區(qū)間上單調遞增.即④正確.

故選:C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,空間幾何體,△、△、△均是邊長為2的等邊三角形,平面平面,且平面平面,中點.

1)證明:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直四棱柱中,四邊形為平行四邊形,的中點,,.

1)求證:平面平面;

2)求直線與直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“柯西不等式”是由數(shù)學家柯西在研究數(shù)學分析中的“流數(shù)”問題時得到的,但從歷史的角度講,該不等式應當稱為柯西﹣﹣布尼亞科夫斯基﹣﹣施瓦茨不等式,因為正是后兩位數(shù)學家彼此獨立地在積分學中推而廣之,才將這一不等式推廣到完善的地步,在高中數(shù)學選修教材4﹣5中給出了二維形式的柯西不等式:a2+b2)(c2+d2ac+bd2當且僅當adbc(即)時等號成立.該不等式在數(shù)學中證明不等式和求函數(shù)最值等方面都有廣泛的應用.根據(jù)柯西不等式可知函數(shù)的最大值及取得最大值時x的值分別為( 。

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,則方程所有根的和等于(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】百鳥蛋,又稱九巧板,是類似于七巧板的益智拼圖.相傳是紀念哥倫布所制作的蛋形拼圖,故又有哥倫布蛋形拼圖一稱.如圖,九巧板由2個不規(guī)則四邊形、2個大三角形、1個小三角形、2個不規(guī)則三角形和兩個小扇形組成.在拼圖時必須使用所有組件,角與邊可相連接,但組件不能重疊.九巧板能拼擺出一百多種飛禽圖形,可說是變化無窮、極富趣味,因此也被稱為百鳥朝鳳拼板.已知拼圖中兩個大三角形(圖中陰影部分)為直角邊長為2的等腰直角三角形,現(xiàn)用隨機模擬的方法來估算此九巧板的總面積,隨機在九巧板內選取100個點,發(fā)現(xiàn)有34個點落在兩個大三角形內,則此九巧板的總面積約為______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD是菱形,PA=PD,∠DAB=60°.

(1)證明:ADPB.

(2)若PB=,AB=PA=2,求三棱錐P-BCD的體積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體的棱長為2,分別為的中點,則以下說法錯誤的是(

A.平面截正方體所的截面周長為

B.存在上一點使得平面

C.三棱錐體積相等

D.存在上一點使得平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】1是某縣參加2007年高考的學生身高條形統(tǒng)計圖,從左到右的各條形圖表示學生人數(shù)依次記為A1A2、…A10(如A2表示身高(單位:cm)在[150,155內的人數(shù)].圖2是統(tǒng)計圖1中身高在一定范圍內學生人數(shù)的一個算法流程圖.現(xiàn)要統(tǒng)計身高在160~180cm(含160cm,不含180cm)的學生人數(shù),那么在流程圖中的判斷框內應填寫的條件是

A.i<6B.i<7C.i<8D.i<9

查看答案和解析>>

同步練習冊答案