精英家教網 > 高中數學 > 題目詳情

已知函數f(x)=數學公式,則使函數f(x)的圖象位于直線y=1上方的x的取值范圍是 ________.

-1<x≤0或x>2
分析:由題意函數f(x)的圖象位于直線y=1上方,就是求解使f(x)>1的x的取值范圍.本題中的函數是一個分段函數,因此在解答時要注意討論x≤0和x>0兩種情況.
解答:當x≤0時,3x+1>1=30?x+1>0,∴-1<x≤0;
當x>0時,log2x>1?x>2,∴x>2,
綜上所述:-1<x≤0或x>2.
故答案為:-1<x≤0或x>2.
點評:本題考查對數函數的定義、圖象和性質,分段函數的概念.分類討論的思想.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數f(x)的最小正周期;
(2)若函數y=f(2x+
π
4
)
的圖象關于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)為定義在R上的奇函數,且當x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達式;
(2)若關于x的方程f(x)-a=o有解,求實數a的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調,求實數m的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數列{
1
f(n)
}
的前n項和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)是定義在區(qū)間(-1,1)上的奇函數,且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數a的取值范圍是
 

查看答案和解析>>

同步練習冊答案