已知橢圓+y2=1的左頂點為A,過A作兩條互相垂直的弦AM、AN交橢圓于M、N兩點.
(1)當直線AM的斜率為1時,求點M的坐標;
(2)當直線AM的斜率變化時,直線MN是否過x軸上的一定點?若過定點,請給出證明,并求出該定點;若不過定點,請說明理由.
(1)(2)
(1)直線AM的斜率為1時,直線AM為y=x+2,代入橢圓方程并化簡得5x2+16x+12=0,解之得x1=-2,x2=-,∴點M的坐標為.
(2)設(shè)直線AM的斜率為k,則AM為y=k(x+2),
化簡得(1+4k2)x2+16k2x+16k2-4=0.
∵此方程有一根為-2,∴xM,同理可得xN
由(1)知若存在定點,則此點必為P.
∵kMP,
同理可計算得kPN.∴直線MN過x軸上的一定點P
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知平面上的動點P(x,y)及兩個定點A(-2,0),B(2,0),直線PA,PB的斜率分別為K1,K2且K1K2=-
(1).求動點P的軌跡C方程;
(2).設(shè)直線L:y=kx+m與曲線C交于不同兩點,M,N,當OM⊥ON時,求O點到直線L的距離(O為坐標原點)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的焦點在軸上,離心率為,對稱軸為坐標軸,且經(jīng)過點
(1)求橢圓的方程;
(2)直線與橢圓相交于、兩點, 為原點,在、上分別存在異于點的點、,使得在以為直徑的圓外,求直線斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的左、右焦點分別為、, 焦距為2,過作垂直于橢圓長軸的弦長為3
(1)求橢圓的方程;
(2)若過點的動直線交橢圓于A、B兩點,判斷是否存在直線使得為鈍角,若存在,求出直線的斜率的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓的中心在原點、焦點在軸上,拋物線的頂點在原點、焦點在軸上.小明從曲線、上各取若干個點(每條曲線上至少取兩個點),并記錄其坐標(.由于記錄失誤,使得其中恰有一個點既不在橢圓上,也不在拋物線上,小明的記錄如下:














據(jù)此,可推斷橢圓的方程為            

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知曲線C上動點P(x,y)到定點F1(,0)與定直線l1∶x=的距離之比為常數(shù).
(1)求曲線C的軌跡方程;
(2)以曲線C的左頂點T為圓心作圓T:(x+2)2+y2=r2(r>0),設(shè)圓T與曲線C交于點M與點N,求·的最小值,并求此時圓T的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓C:+y2=1的兩焦點為F1,F(xiàn)2,點P(x0,y0)滿足≤1,則PF1+PF2的取值范圍為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,圓C:(x+1)2+y2=16,點F(1,0),E是圓C上的一個動點,EF的垂直平分線PQ與CE交于點B,與EF交于點D.

(1)求點B的軌跡方程;
(2)當點D位于y軸的正半軸上時,求直線PQ的方程;
(3)若G是圓C上的另一個動點,且滿足FG⊥FE,記線段EG的中點為M,試判斷線段OM的長度是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是橢圓上的點,分別是橢圓的左、右焦點,若,則的面積為(     )
A.B.C.D.

查看答案和解析>>

同步練習冊答案