5.方程$\frac{x|x|}{81}+\frac{y|y|}{49}=λ(λ<0)$的曲線即為y=f(x)的圖象,對(duì)于函數(shù)y=f(x),下列命題中正確的是②③⑤.(請(qǐng)寫出所有正確命題的序號(hào))
①函數(shù)y=f(x)的圖象關(guān)于直線y=x對(duì)稱;
②函數(shù)y=f(x)在R上是單調(diào)遞減函數(shù);
③函數(shù)y=f(x)的圖象不經(jīng)過第一象限;
④函數(shù)F(x)=9f(x)+7x至少存在一個(gè)零點(diǎn);
⑤函數(shù)y=f(x)的值域是R.

分析 不妨取λ=-1,根據(jù)x、y的正負(fù)去絕對(duì)值,將方程化簡(jiǎn),得到相應(yīng)函數(shù)在各個(gè)區(qū)間上的表達(dá)式,由此作出函數(shù)的圖象,即可得出結(jié)論.

解答 解:不妨取λ=-1,方程為$\frac{x|x|}{81}+\frac{y|y|}{49}$=-1,圖象如圖所示.
對(duì)于①,不正確,②③⑤,正確
由F(x)=9f(x)+7x=0得f(x)=-$\frac{7}{9}$x.
因?yàn)殡p曲線的漸近線為y=±$\frac{7}{9}$x
所以函數(shù)y=f(x)與直線y=-$\frac{7}{9}$x無公共點(diǎn),
因此F(x)=9f(x)+7x不存在零點(diǎn),可得④不正確.
故答案為:②③⑤.

點(diǎn)評(píng) 本題給出含有絕對(duì)值的二次曲線,要我們判斷并于曲線性質(zhì)的幾個(gè)命題的真假.著重考查了含有絕對(duì)值的函數(shù)式的化簡(jiǎn)、函數(shù)的圖象與性質(zhì)、直線與圓錐曲線位置關(guān)系等知識(shí),屬于難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)實(shí)數(shù)a、b均為區(qū)間(0,1)內(nèi)的隨機(jī)數(shù),則關(guān)于x的不等式a2x2+bx+1<0有實(shí)數(shù)解的概率為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)全集U={1,2,3,4,5},集合A={1,2},B={x|x2-5x+6=0},則A∩(∁UB)=( 。
A.{4,5}B.{2,3}C.{1}D.{4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知a>b,c>d,且c,d不為零,那么( 。
A.ad>bcB.ac>bdC.a-c>b-dD.a-d>b-c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列函數(shù)中,最小值為4的是( 。
A.y=$\frac{lgx}{2}+\frac{8}{lgx}$B.y=$2\sqrt{{x^2}+2}+\frac{2}{{\sqrt{{x^2}+2}}}$
C.$y=sinx+\frac{4}{sinx}$(0<x<π)D.y=ex+4e-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若復(fù)數(shù)z=$\frac{1+mi}{1+i}$(i是虛數(shù)單位)是實(shí)數(shù),則實(shí)數(shù)m=( 。
A.1B.2C.$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知某三棱錐的三視圖(單位:cm)如圖所示,則此三棱錐的體積是2cm3,表面積是5+3$\sqrt{2}$+$\sqrt{13}$cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=cosx(sinx-$\sqrt{3}$cosx)$+\frac{\sqrt{3}}{2}$,x∈R.
(Ⅰ)求f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)若函數(shù)g(x)=f(x+a)為偶數(shù),求|a|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在平面直角坐標(biāo)系xOy中,直線l:ax+by+c=0被圓x2+y2=16截得的弦的中點(diǎn)為M,且滿足a+2b-c=0,當(dāng)|OM|取得最大值時(shí),直線l的方程是x+2y+5=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案