【題目】若直線m被兩平行線l1:x+y=0與l2:x+y+ =0所截得的線段的長為2 ,則m的傾斜角可以是
①15° ②45° ③60° ④105°⑤120° ⑥165°
其中正確答案的序號是 . (寫出所有正確答案的序號)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,已知cosC+(cosA﹣ sinA)cosB=0.
(1)求角B的大小;
(2)若a+c=1,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sinxcosx﹣2cos2x. (Ⅰ)求f( );
(Ⅱ)求f(x)的最大值和單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐P﹣ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC= ,AB=1,M是PB的中點(diǎn).
(1)證明:面PAD⊥面PCD;
(2)求AC與PB所成的角;
(3)求面AMC與面BMC所成二面角的大小余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) (x∈R),其中t∈R,將f(x)的最小值記為g(t).
(1)求g(t)的表達(dá)式;
(2)當(dāng)﹣1≤t≤1時,要使關(guān)于t的方程g(t)=kt有且僅有一個實根,求實數(shù)k的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩定點(diǎn)A(2,5),B(-2,1),M(在第一象限)和N是過原點(diǎn)的直線l上的兩個動點(diǎn),且|MN|=,l∥AB,如果直線AM和BN的交點(diǎn)C在y軸上,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某貨輪勻速行駛在相距300海里的甲、乙兩地間運(yùn)輸貨物,運(yùn)輸成本由燃料費(fèi)用和其它費(fèi)用組成,已知該貨輪每小時的燃料費(fèi)用與其航行速度的平方成正比(比例系數(shù)為0.5),其它費(fèi)用為每小時800元,且該貨輪的最大航行速度為50海里/小時.
(1)請將從甲地到乙地的運(yùn)輸成本y(元)表示為航行速度x(海里/小時)的函數(shù);
(2)要使從甲地到乙地的運(yùn)輸成本最少,該貨輪應(yīng)以多大的航行速度行駛?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= x3﹣ (m+3)x2+(m+6)x,x∈R.(其中m為常數(shù))
(1)當(dāng)m=4時,求函數(shù)的極值點(diǎn)和極值;
(2)若函數(shù)y=f(x)在區(qū)間(0,+∞)上有兩個極值點(diǎn),求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別是焦距為的橢圓的左、右頂點(diǎn), 為橢圓上非頂點(diǎn)的點(diǎn),直線的斜率分別為,且.
(1)求橢圓的方程;
(2)直線(與軸不重合)過點(diǎn)且與橢圓交于兩點(diǎn),直線與交于點(diǎn),試求點(diǎn)的軌跡是否是垂直軸的直線,若是,則求出點(diǎn)的軌跡方程,若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com