給定函數(shù)①,②y=log2(x+1),③y=|x﹣1|,④,其中在區(qū)間(0,1)上單調(diào)遞減的函數(shù)序號(hào)是 
 [     ]
A.①②
B.②③
C.③④
D.①④
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+8x+3.
(1)若函數(shù)f(x)=ax2+8x+3的圖象恒在直線y=5的下方,求實(shí)數(shù)a的范圍;
(2)對(duì)于給定的負(fù)數(shù)a,有一個(gè)最大的正數(shù)l(a),使得在整個(gè)區(qū)間[0,l(a)]上,不等式|f(x)|≤5都成立.問a為何值時(shí)l(a)最大?求出這個(gè)最大的l(a),證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•江西模擬)已知函數(shù)f(x)=ax-lnx+1(a∈R),g(x)=xe1-x
(1)求函數(shù)g(x)在區(qū)間(0,e]上的值域;
(2)是否存在實(shí)數(shù)a,對(duì)任意給定的x0∈(0,e],在區(qū)間[1,e]上都存在兩個(gè)不同的xi(i=1,2),使得f(xi)=g(x0)成立.若存在,求出a的取值范圍;若不存在,請(qǐng)說明理由.
(3)給出如下定義:對(duì)于函數(shù)y=F(x)圖象上任意不同的兩點(diǎn)A(x1,y1),B(x2,y2),如果對(duì)于函數(shù)y=F(x)圖象上的點(diǎn)M(x0,y0)(其中x0=
x1+x22
)
總能使得F(x1)-F(x2)=F'(x0)(x1-x2)成立,則稱函數(shù)具備性質(zhì)“L”,試判斷函數(shù)f(x)是不是具備性質(zhì)“L”,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示直角梯形ABCD中上底CD=2,下底AB=4,高BC=1直線l與線段AB垂直相交,設(shè)A點(diǎn)到直線l的距離為x,直線l截梯形ABCD所得的位于l左方的圖形面積為y.
(1)求函數(shù)y=f(x)解析式;
(2)在給定的坐標(biāo)系內(nèi)畫出y=f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)集,其中,,點(diǎn)列在L中,為L與y軸的交點(diǎn),等差數(shù)列的公差為1,。

(1)求數(shù)列的通項(xiàng)公式;

(2)若,令;試用解析式寫出關(guān)于的函數(shù)。

(3)若,給定常數(shù)m(),是否存在,使得 ,若存在,求出的值;若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江西省重點(diǎn)中學(xué)協(xié)作體高三第三次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=ax-lnx+1(a∈R),g(x)=xe1-x
(1)求函數(shù)g(x)在區(qū)間(0,e]上的值域;
(2)是否存在實(shí)數(shù)a,對(duì)任意給定的x∈(0,e],在區(qū)間[1,e]上都存在兩個(gè)不同的xi(i=1,2),使得f(xi)=g(x)成立.若存在,求出a的取值范圍;若不存在,請(qǐng)說明理由.
(3)給出如下定義:對(duì)于函數(shù)y=F(x)圖象上任意不同的兩點(diǎn)A(x1,y1),B(x2,y2),如果對(duì)于函數(shù)y=F(x)圖象上的點(diǎn)M(x,y)(其中總能使得F(x1)-F(x2)=F'(x)(x1-x2)成立,則稱函數(shù)具備性質(zhì)“L”,試判斷函數(shù)f(x)是不是具備性質(zhì)“L”,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案