(本小題滿分14分)在周長為定值的中,已知,動點的運動軌跡為曲線G,且當動點運動時,有最小值.
(1) 以所在直線為軸,線段的中垂線為軸建立直角坐標系,求曲線的方程;
(2) 過點作圓的切線交曲線于,兩點.將線段MN的長|MN|表示為的函數(shù),并求|MN|的最大值.
(1)解:(1)設 ()為定值,所以C點的軌跡是以A、B為焦點的橢圓,所以焦距. (2分)
因為
又 ,所以 ,由題意得 .
所以C點軌跡G 的方程為 (6分)
(2) .由題意知,|m|≥1.
當m=1時,切線l的方程為x=1,點M,N的坐標分別為,,此時|MN|=.
當m=-1時,同理可知|MN|=. (7分)
當|m|>1時,設切線l的方程為y=k(x-m),
由得(1+4k2)x2-8k2mx+4k2m2-4=0. (8分)
設M,N兩點的坐標分別為(x1,y1),(x2,y2),
則x1+x2=,x1x2=,
又由l與圓x2+y2=1相切,得=1,即m2k2=k2+1,
所以|MN|==
= =. (12分)
由于當m=±1時,|MN|=.
所以|MN|=,m∈(-∞,-1 ]∪[1,+∞).
因為|MN|==≤2,且當m=±時,|MN|=2.
所以|MN|的最大值為2. (14分)
【解析】略
科目:高中數(shù)學 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分14分)設橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設,求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關于第天的函數(shù)關系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com