記集合A={(x,y)|x2+y2≤4}和集合B={(x,y)|x+y-2≤0,x≥0,y≥0}表示的平面區(qū)域分別為Ω1,Ω2,若在區(qū)域Ω1內(nèi)任取一點(diǎn)M(x,y),則點(diǎn)M落在區(qū)域Ω2內(nèi)的概率為( )
A.
B.
C.
D.
【答案】分析:根據(jù)題意可知,是與面積有關(guān)的幾何概率,要求M落在區(qū)域Ω2內(nèi)的概率,只要求A、B所表示區(qū)域的面積,然后代入概率公式,計算即可得答案.
解答:解:根據(jù)題意可得集合A={(x,y)|x2+y2≤4}所表示的區(qū)域即為如圖所表示的圓及內(nèi)部的平面區(qū)域,面積為4π,
集合B={(x,y)|x+y-2≤0,x≥0,y≥0}表示的平面區(qū)域即為圖中的Rt△AOB,,
根據(jù)幾何概率的計算公式可得P=
故選A.
點(diǎn)評:本題主要考查了幾何概率的計算公式P=,而本題是與面積有關(guān)的幾何概率模型.解決本題的關(guān)鍵是要準(zhǔn)確求出兩區(qū)域的面積.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

記集合A={(x,y)|x2+y2≤4}和集合B={(x,y)|x+y-2≤0,x≥0,y≥0}表示的平面區(qū)域分別為Ω1,Ω2,若在區(qū)域Ω1內(nèi)任取一點(diǎn)M(x,y),則點(diǎn)M落在區(qū)域Ω2內(nèi)的概率為( 。
A、
1
B、
1
π
C、
1
4
D、
π-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年云南師大附中高考適應(yīng)性月考數(shù)學(xué)試卷3(文科)(解析版) 題型:選擇題

記集合A={(x,y)|x2+y2≤4}和集合B={(x,y)|x+y-2≤0,x≥0,y≥0}表示的平面區(qū)域分別為Ω1,Ω2,若在區(qū)域Ω1內(nèi)任取一點(diǎn)M(x,y),則點(diǎn)M落在區(qū)域Ω2內(nèi)的概率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省聊城一中高三(下)3月月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

記集合A={(x,y)|x2+y2≤4}和集合B={(x,y)|x+y-2≤0,x≥0,y≥0}表示的平面區(qū)域分別為Ω1,Ω2,若在區(qū)域Ω1內(nèi)任取一點(diǎn)M(x,y),則點(diǎn)M落在區(qū)域Ω2內(nèi)的概率為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年廣東省茂名市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:選擇題

記集合A={(x,y)|x2+y2≤4}和集合B={(x,y)|x+y-2≤0,x≥0,y≥0}表示的平面區(qū)域分別為Ω1,Ω2,若在區(qū)域Ω1內(nèi)任取一點(diǎn)M(x,y),則點(diǎn)M落在區(qū)域Ω2內(nèi)的概率為( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案