【題目】設f(x)是定義域為R的周期函數,最小正周期為2,且
f(1+x)=f(1-x),當-1≤x≤0時,f(x)=-x.
(1)判斷f(x)的奇偶性;
(2)試求出函數f(x)在區(qū)間[-1,2]上的表達式.
【答案】(1) f(x)是偶函數(2)
【解析】試題分析:(1)因為f(1+x)=f(1-x),所以f(-x)=f(2+x),又f(x)是最小正周期為 2的函數,所以f(x+2)=f(x),則 f(-x)=f(x),所以得f(x)是偶函數;
(2)由-1≤x≤0時,f(x)=-x,根據f(x)是偶函數得當0≤x≤1時,f(x)解析式;由f(x)是最小正周期為 2的函數,得1≤x≤2時,f(x)解析式.
試題解析:
(1)∵f(1+x)=f(1-x),∴f(-x)=f(2+x).
又f(x+2)=f(x),∴f(-x)=f(x).
又f(x)的定義域為R,
∴f(x)是偶函數.
(2)當x∈[0,1]時,-x∈[-1,0],
則f(x)=f(-x)=x;
進而當1≤x≤2時,-1≤x-2≤0,
f(x)=f(x-2)=-(x-2)=-x+2.
故
科目:高中數學 來源: 題型:
【題目】據某氣象中心觀察和預測:發(fā)生于M地的沙塵暴一直向正南方向移動,其移動速度v(km/h)與時間t(h)的函數圖象如圖所示.過線段OC上一點T(t,0)作橫軸的垂線l,梯形OABC在直線l左側部分的面積即時間t(h)內沙塵暴所經過的路程s(km).
(1)當t=4時,求s的值;
(2)將s隨t變化的規(guī)律用數學關系式表示出來;
(3)若N城位于M地正南方向,且距M地650 km,試判斷這場沙塵暴是否會侵襲到N城,如果會,在沙塵暴發(fā)生后多長時間它將侵襲到N城?如果不會,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面α外有兩條直線m和n,如果m和n在平面α內的投影分別是m1和n1,給出下列四個命題:①m1⊥n1m⊥n;②m⊥nm1⊥n1;③m1與n1相交m與n相交或重合;④m1與n1平行m與n平行或重合.其中不正確的命題個數是( )
A. 1 B. 2
C. 3 D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,其中為自然對數的底數.
(1)若函數在區(qū)間上是單調函數,試求實數的取值范圍;
(2)已知函數,且,若函數在區(qū)間上恰有3個零點,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校為了鼓勵學生熱心公益,服務社會,成立了“慈善義工社”.2017年12月,該校“慈善義工社”為學生提供了4次參加公益活動的機會,學生可通過網路平臺報名參加活動.為了解學生實際參加這4次活動的情況,該校隨機抽取100名學生進行調查,數據統(tǒng)計如下表,其中“√”表示參加,“×”表示未參加.
(Ⅰ)從該校所有學生中任取一人,試估計其2017年12月恰參加了2次學校組織的公益活動的概率;
(Ⅱ)若在已抽取的100名學生中,2017年12月恰參加了1次活動的學生比4次活動均未參加的學生多17人,求的值;
(Ⅲ)若學生參加每次公益活動可獲得10個公益積分,試估計該校4000名學生中,2017年12月獲得的公益積分不少于30分的人數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,AC是圓O的直徑,點B在圓O上,∠BAC=30°,BM⊥AC于點M,EA⊥平面ABC,FC∥EA,AC=4,EA=3,FC=1.
(1)證明:EM⊥BF;
(2)求平面BEF與平面ABC所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數, ().
(1)當時,若函數與的圖象在處有相同的切線,求的值;
(2)當時,若對任意和任意,總存在不相等的正實數,使得,求的最小值;
(3)當時,設函數與的圖象交于 兩點.求證: .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com