(2013•淄博二模)某校從高一年級學(xué)生中隨機(jī)抽取50名學(xué)生,將他們的期中考試數(shù)學(xué)成績(滿分100分,成績均為不低于40分的整數(shù))分成六段:[40,50),[50,60),…,[90,100],得到如圖所示的頻率分布直方圖.
(I)若該校高一年級共有學(xué)生1000人,試估計(jì)成績不低于60分的人數(shù);
(II)為了幫助學(xué)生提高數(shù)學(xué)成績,學(xué)校決定在隨機(jī)抽取的50名學(xué)生中成立“二幫一”小組,即從成績[90,100]中選兩位同學(xué),共同幫助[40,50)中的某一位同學(xué).已知甲同學(xué)的成績?yōu)?2分,乙同學(xué)的成績?yōu)?5分,求甲、乙恰好被安排在同一小組的概率.
分析:(I)根據(jù)頻率分布直方圖,成績不低于60分的頻率,然后根據(jù)頻數(shù)=頻率×總數(shù)可求出所求;
(II)先算出成績在[40,50)分?jǐn)?shù)段內(nèi)的人數(shù),以及成績在[90,100]分?jǐn)?shù)段內(nèi)的人數(shù),列出所有的“二幫一”小組分組辦法的基本事件,以及甲、乙兩同學(xué)被分在同一小組的基本事件,最后利用古典概型的概率公式解之即可.
解答:解:(Ⅰ)根據(jù)頻率分布直方圖,
成績不低于6(0分)的頻率為1-10×(0.004+0.010)=0.86.    …(2分)
由于該校高一年級共有學(xué)生1000人,利用樣本估計(jì)總體的思想,可估計(jì)該校高一年級數(shù)學(xué)成績不低于6(0分)的人數(shù)為1000×0.86=860人.      …(5分)
(Ⅱ)成績在[40,50)分?jǐn)?shù)段內(nèi)的人數(shù)為50×0.04=2人
成績在[90,100]分?jǐn)?shù)段內(nèi)的人數(shù)為50×0.1=5人,…(7分)
[40,50)內(nèi)有2人,記為甲、A.
[90,100)內(nèi)有5人,記為乙、B、C、D、E.
則“二幫一”小組有以下20種分組辦法:甲乙B,甲乙C,甲乙D,甲乙E,甲BC,
甲BD,甲BE,甲CD,甲CE,甲DE,A乙B,A乙C,A乙D,A乙E,ABC,ABD,ABE,ACD,ACE,ADE                  …(10分)
其中甲、乙兩同學(xué)被分在同一小組有4種辦法:甲乙B,甲乙C,甲乙D,甲乙E
所以甲乙兩同學(xué)恰好被安排在同一小組的概率為P=
4
20
=
1
5
. …(12分)
點(diǎn)評:本小題主要考查頻率、頻數(shù)、統(tǒng)計(jì)和概率等知識(shí),考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及運(yùn)算求解能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•淄博二模)在如圖所示的幾何體中,△ABC是邊長為2的正三角形,AE=1,AE⊥平面ABC,平面BCD⊥平面ABC,BD=CD,且BD⊥CD.
(Ⅰ)AE∥平面BCD;
(Ⅱ)平面BDE⊥平面CDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•淄博二模)已知P(x,y)為函數(shù)y=1+lnx圖象上一點(diǎn),O為坐標(biāo)原點(diǎn),記直線OP的斜率k=f(x).
(Ⅰ)若函數(shù)f(x)在區(qū)間(m,m+
1
3
)
(m>0)上存在極值,求實(shí)數(shù)m的取值范圍;
(Ⅱ)當(dāng) x≥1時(shí),不等式f(x)≥
t
x+1
恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•淄博二模)如圖,平行四邊形ABCD中,AB=2,AD=1,∠A=60°,點(diǎn)M在AB邊上,且AM=
1
3
AB,則
DM
DB
•等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•淄博二模)等比數(shù)列{cn}滿足cn+1+cn=10•4n-1(n∈N*),數(shù)列{an}的前n項(xiàng)和為Sn,且an=log2cn
(I)求an,Sn;
(II)數(shù)列{bn}滿足bn=
14Sn-1
,Tn為數(shù)列{bn}
的前n項(xiàng)和,是否存在正整數(shù)m,k(1<m<k),使得T1,Tm,Tk成等比數(shù)列?若存在,求出所有m,k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•淄博二模)集合A={-1,0,1},B={y|y=ex,x∈A},則A∩B=( 。

查看答案和解析>>

同步練習(xí)冊答案