如圖所示點F是拋物線y2=8x的焦點,點A、B分別在拋物線y2=8x及圓(x-2)2+y2=16的實線部分上運動,且AB總是平行于x軸,則△FAB的周長的取值范圍是( 。
A、(6,10)
B、(8,12)
C、[6,8]
D、[8,12]
考點:拋物線的簡單性質(zhì)
專題:計算題,直線與圓,圓錐曲線的定義、性質(zhì)與方程
分析:由拋物線定義可得|AF|=xA+2,從而△FAB的周長=|AF|+|AB|+|BF|=xA+2+(xB-xA)+4=6+xB,確定B點橫坐標的范圍,即可得到結(jié)論.
解答: 解:拋物線的準線l:x=-2,焦點F(2,0),
由拋物線定義可得|AF|=xA+2,
圓(x-2)2+y2=16的圓心為(2,0),半徑為4,
∴△FAB的周長=|AF|+|AB|+|BF|=xA+2+(xB-xA)+4=6+xB
由拋物線y2=8x及圓(x-2)2+y2=16可得交點的橫坐標為2,
∴xB∈(2,6)
∴6+xB∈(8,12)
故選B.
點評:本題考查拋物線的定義,考查拋物線與圓的位置關系,確定B點橫坐標的范圍是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若a>1,則函數(shù)y=ax與y=(a-1)x2的圖象可能是下列四個選項中的(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若點P(x,1)在過A(2,4)B(5,11)兩點的直線上,求x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a>b是|a|>b的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A是拋物線x2=24y上的一點,且點A到拋物線準線的距離是10,則點A的坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某經(jīng)營者在一個袋子里放3種不同顏色的小球.每種顏色的球都是3個,然后讓玩的人從中一次性摸出5個球并規(guī)定如果摸出來的小球的顏色是“221”(即有2種顏色的球各為2個,另一種顏色的球為1個),則玩者要交錢5元;如果摸出來的顏色是“311”,則獎給玩者2元;如果摸出來的顏色是“320”則獎給玩者10元.
(1)求玩者要交錢的概率;
(2)求經(jīng)營者在一次游戲中獲利的期望(保留到0.01元).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P是雙曲線
x2
a2
-
y2
9
=1
右支上的一點,雙曲線的一條漸近線方程為y=3x,設F1、F2分別是雙曲線的左、右焦點.若|PF2|=3,則|PF1|=(  )
A、5B、4C、3D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋物線y=-
1
8
x2的準線方程( 。
A、x=
1
32
B、y=2
C、x=
1
4
D、y=4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C的極坐標方程為ρ=sinθ,則曲線C為( 。
A、直線B、圓C、雙曲線D、拋物線

查看答案和解析>>

同步練習冊答案