如圖,已知在?ABCD中,O1,O2,O3為對角線BD上三點(diǎn),且BO1=O1O2=O2O3=O3D,連接AO1并延長交BC于點(diǎn)E,連接EO3并延長交AD于F,則AD∶FD等于( )
A.19∶2 | B.9∶1 |
C.8∶1 | D.7∶1 |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線C的極坐標(biāo)方程 是=1,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù))。
(1)寫出直線與曲線C的直角坐標(biāo)方程;
(2)設(shè)曲線C經(jīng)過伸縮變換得到曲線,設(shè)曲線上任一點(diǎn)為,求的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分10分) 在直角坐標(biāo)系中,以極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為分別為與軸,軸的交點(diǎn)
(1)寫出的直角坐標(biāo)方程,并求出的極坐標(biāo)
(2)設(shè)的中點(diǎn)為,求直線的極坐標(biāo)方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
點(diǎn)P是△ABC所在平面內(nèi)的一點(diǎn),且滿足,則△PAC的面積與△ABC的面積之比為( 。
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖,與圓相切于點(diǎn),直線交圓于兩點(diǎn),弦垂直于.則下面結(jié)論中,錯誤的結(jié)論是( )
A.∽ | B. |
C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知極坐標(biāo)系的極點(diǎn)O與直角坐標(biāo)系的原點(diǎn)重合,極軸與軸的正半軸重合,曲線與曲線(參數(shù))交于A、B兩點(diǎn),
(1)求證:;
(2)求的外接圓的標(biāo)準(zhǔn)方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知曲線C的極坐標(biāo)方程是=1,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù))。
(1)寫出直線與曲線C的直角坐標(biāo)方程;
(2)設(shè)曲線C經(jīng)過伸縮變換得到曲線,設(shè)曲線上任一點(diǎn)為,求的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知A(2,1),B(3,2),C(-1,4),則△ABC是( )
A.直角三角形 |
B.銳角三角形 |
C.鈍角三角形 |
D.等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖所示,D、E分別是△ABC的邊AB、AC上的點(diǎn),DE∥BC,且=2,那么△ADE與四邊形DBCE的面積比是
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com