分析 設(shè)$\overrightarrow{a}$=(x,y,z),由|$\overrightarrow{a}$|=$\sqrt{3}$,且$\overrightarrow{a}$⊥$\overrightarrow{AB}$,$\overrightarrow{a}$⊥$\overrightarrow{AC}$,列出方程組,能求出向量$\overrightarrow{a}$的坐標(biāo).
解答 解:設(shè)$\overrightarrow{a}$=(x,y,z),
∵A(0,2,3),B(-2,1,6),C(1,-1,5),
∴$\overrightarrow{AB}$=(-2,-1,3),$\overrightarrow{AC}$=(1,-3,2),
∵|$\overrightarrow{a}$|=$\sqrt{3}$,且$\overrightarrow{a}$⊥$\overrightarrow{AB}$,$\overrightarrow{a}$⊥$\overrightarrow{AC}$,
∴$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}+{z}^{2}=3}\\{-2x-y+3z=0}\\{x-3y+2z=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=1}\\{y=1}\\{z=1}\end{array}\right.$或$\left\{\begin{array}{l}{x=-1}\\{y=-1}\\{z=-1}\end{array}\right.$.
∴向量$\overrightarrow{a}$的坐標(biāo)為:(1,1,1)或(-1,-1,-1).
故答案為:(1,1,1)或(-1,-1,-1).
點(diǎn)評(píng) 本題考查點(diǎn)的坐標(biāo)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意向量垂直的性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,0) | B. | (2,+∞) | C. | (0,2) | D. | (-2,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{-1+\sqrt{3}}}{2}$ | B. | $\frac{{-1+\sqrt{5}}}{2}$ | C. | $\frac{{1+\sqrt{5}}}{2}$ | D. | $2+\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | -1 | D. | 2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com