【題目】從某學(xué)校的800名男生中隨機(jī)抽取50名測量其身高,被測學(xué)生身高全部介于和之間,將測量結(jié)果按如下方式分組:第一組,第二組,…,第八組,如圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組的人數(shù)為4.
(1)請補(bǔ)全頻率分布直方圖并求第七組的頻率;
(2)估計(jì)該校的800名男生的身高的中位數(shù)以及身高在以上(含)的人數(shù);
(3)若從身高屬于第六組和第八組的所有男生中隨機(jī)抽取兩名男生,記他們的身高分別為,,事件,事件,求
【答案】(1)見解析;(2) 中位數(shù)為.人數(shù)為144人(3)
【解析】
(1)由頻率分布直方圖的性質(zhì),即可求解第七組的頻率;
(2)根據(jù)頻率分布直方圖,求得各組的頻率,再根據(jù)頻率分布直方圖中中位數(shù)的計(jì)算公式,即可求得中位數(shù),再根據(jù)直方圖得后三組頻率為,即可求解身高在以上的人數(shù);
(3)第六組的人數(shù)為4,設(shè)為,第八組的人數(shù)為2,設(shè)為,利用列舉法求得基本事件的總數(shù),利用古典概型及其概率的計(jì)算公式,求得,進(jìn)而求得,最后利用互斥事件的概率加法公式,即可求解.
(1)第六組的頻率為,
由頻率分布直方圖的性質(zhì),
可得所以第七組的頻率為.
(2)身高在第一組的頻率為,
身高在第二組的頻率為,
身高在第三組的頻率為,
身高在第四組的頻率為,
由于,,
估計(jì)這所學(xué)校的名男生的身高的中位數(shù)為m,則,
由,
得,所以可估計(jì)達(dá)所學(xué)校的名男生的身高的中位數(shù)為,
由直方圖得后三組頻率為,
所以身高在以上(含)的人數(shù)為.
(3)第六組的人數(shù)為4,設(shè)為,第八組,的人數(shù)為2,
設(shè)為則從中選兩名男生有,,,,,,,,,,,,,,共15種情況.
因事件發(fā)生當(dāng)且僅當(dāng)隨機(jī)抽取的兩名男生在同一組,所以事件E包含的基本事件為,,,,,共7種情況,故.
由于,所以事件是不可能事件,.
由于事件E和事件F是互斥事件,所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P—ABC中,△PBC為等邊三角形,點(diǎn)O為BC的中點(diǎn),AC⊥PB,平面PBC⊥平面ABC.
(1)求直線PB和平面ABC所成的角的大;
(2)求證:平面PAC⊥平面PBC;
(3)已知E為PO的中點(diǎn),F(xiàn)是AB上的點(diǎn),AF=AB.若EF∥平面PAC,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校進(jìn)行理科、文科數(shù)學(xué)成績對比,某次考試后,各隨機(jī)抽取100名同學(xué)的數(shù)學(xué)考試成績進(jìn)行統(tǒng)計(jì),其頻率分布表如下.
分組 | 頻數(shù) | 頻率 | 分組 | 頻數(shù) | 頻率 | |
[135,150] | 8 | 0.08 | [135,150] | 4 | 0.04 | |
[120,135) | 17 | 0.17 | [120,135) | 18 | 0.18 | |
[105,120) | 40 | 0.4 | [105,120) | 37 | 0.37 | |
[90,105) | 21 | 0.21 | [90,105) | 31 | 0.31 | |
[75,90) | 12 | 0. 12 | [75,90) | 7 | 0.07 | |
[60,75) | 2 | 0.02 | [60,75) | 3 | 0.03 | |
總計(jì) | 100 | 1 | 總計(jì) | 100 | 1 |
理科 文科
(Ⅰ)根據(jù)數(shù)學(xué)成績的頻率分布表,求文科數(shù)學(xué)成績的中位數(shù)的估計(jì)值;(精確到0.01)
(Ⅱ)請?zhí)顚懴旅娴牧新?lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認(rèn)為數(shù)學(xué)成績與文理科有關(guān):
數(shù)學(xué)成績120分 | 數(shù)學(xué)成績<120分 | 合計(jì) | |
理科 | |||
文科 | |||
合計(jì) | 200 |
參考公式與臨界值表:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | ||
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的參數(shù)方程是 (t是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.曲線C的極坐標(biāo)方程為ρ=4cos(θ+ ).
(1)判斷直線l與曲線C的位置關(guān)系;
(2)過直線l上的點(diǎn)作曲線C的切線,求切線長的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把函數(shù)的圖象沿軸向左平移個單位,縱坐標(biāo)伸長到原來的2倍(橫坐標(biāo)不變)后得到函數(shù)的圖象,對于函數(shù)有以下四個判斷:
①該函數(shù)的解析式為;;
②該函數(shù)圖象關(guān)于點(diǎn)對稱;
③該函數(shù)在[,上是增函數(shù);
④函數(shù)在上的最小值為,則.
其中,正確判斷的序號是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),下列命題正確的有_______.(寫出所有正確命題的編號)
①是奇函數(shù);
②在上是單調(diào)遞增函數(shù);
③方程有且僅有1個實(shí)數(shù)根;
④如果對任意,都有,那么的最大值為2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司制造兩種電子設(shè)備:影片播放器和音樂播放器.在每天生產(chǎn)結(jié)束后,要對產(chǎn)品進(jìn)行檢測,故障的播放器會被移除進(jìn)行修復(fù). 下表顯示各播放器每天制造的平均數(shù)量以及平均故障率.
商品類型 | 播放器每天平均產(chǎn)量 | 播放器每天平均故障率 |
影片播放器 | 3000 | 4% |
音樂播放器 | 9000 | 3% |
下面是關(guān)于公司每天生產(chǎn)量的敘述:
①每天生產(chǎn)的播放器有三分之一是影片播放器;
②在任何一批數(shù)量為100的影片播放器中,恰好有4個會是故障的;
③如果從每天生產(chǎn)的音樂播放器中隨機(jī)選取一個進(jìn)行檢測,此產(chǎn)品需要進(jìn)行修復(fù)的概率是0.03.
上面敘述正確的是___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)M的極坐標(biāo)為 ,圓C的參數(shù)方程為 (α為參數(shù)).
(1)直線l過M且與圓C相切,求直線l的極坐標(biāo)方程;
(2)過點(diǎn)P(0,m)且斜率為 的直線l'與圓C交于A,B兩點(diǎn),若|PA||PB|=6,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個命題:①命題“若,則”的逆否命題為假命題:
②命題“若,則”的否命題是“若,則”;
③若“”為真命題,“”為假命題,則為真命題,為假命題;
④函數(shù)有極值的充要條件是或 .
其中正確的個數(shù)有( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com